

# **Evidence-based recommendations for preventing nosocomial transmission during respiratory care for COVID-19 patients**

Jie Li, PhD, RRT, RRT-NPS, RRT-ACCS

Associate Professor, Clinical Education Coordinator

Department of Cardiopulmonary Sciences

Division of Respiratory Care

Rush University

IT'S HOW MEDICINE SHOULD BE®

# Outline

- Infection rate among clinicians
- High-risk procedures and interventions
  - Cough and mask
  - Oxygen therapy
    - Nasal cannula
    - Oxygen mask: simple mask, venturi mask, nonbreather mask
    - High flow nasal cannula
  - Noninvasive ventilation
    - Settings
    - Masks
  - Manual ventilation
  - Intubation
  - Suctioning
  - Nebulization
  - Bronchoscopy examination
  - Personal protection equipment (PPE)



# Medical staff infection rate in China

- 3,300 clinicians in total 80,000 cases were infected by COVID-19

Zhonghua Jie He He Hu Xi Za Zhi. 2020 Mar 12;43(3):209-214

Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia

*Liu Min<sup>1</sup>,He Peng<sup>2</sup>, Liu Huiguo<sup>4</sup>, Wang Xiaojiang<sup>1</sup>,Li Fajiu<sup>1</sup>,Chen Shi<sup>1</sup>,Lin Jie<sup>3</sup>,Chen Bo<sup>3</sup>,Liu Jianhua<sup>3</sup>,Li Chenghong<sup>1</sup>. <sup>1</sup>Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Jianghan University, Wuhan430015, China; <sup>2</sup>Department of geriatrics, the Affiliated Hospital of Jianghan University, Wuhan430015, China; <sup>3</sup>Department of generalization, the Affiliated Hospital of Jianghan University, Wuhan430015, China; <sup>4</sup>Department of Respiratory and Critical Care Medicine, Tongji Hospital Affiliated to Tongji Medical College of HUST, Wuhan430030, China*

*First author: Liu Min; Co-first author: He Peng*

*Corresponding author: Li Chenghong, Email:15827636399@163.com; Liu Jianhua,*

*Email:2127104553@qq.com*

**[Abstract]** **Objective** To investigate the clinical characteristics of medical staff with novel coronavirus pneumonia(NCP). **Methods** 30 patients infected with novel coronavirus referred to jianghan university hospital between January 11, 2020 and January 3, 2020 were studied. The data reviewed included those of clinical manifestations, laboratory investigation and Radiographic features. **Results** The patients consisted of 10 men and 20 women, including 22 doctors and 8 nurses aged 21~59 years(mean 35±8 years). They were divided to 26 common type and 4 severe cases, all of whom had close(within 1m) contact with patients infected of novel coronavirus pneumonia. The average contact times were 12 (7,16) and the average cumulative contact time was 2 (1.5,2.7) h. Clinical symptoms of these patients were fever in 23 patients (76.67%) , headache in 16 patients



Pre-PPE period: surgical mask



Post-PPE period: N95, single use gown, gloves, hat. Face shield or goggles if performing intubation

| 组别  | 例数 | 临床分型          |              |
|-----|----|---------------|--------------|
|     |    | 普通型           | 重型           |
|     |    | Mild (26)     | Critical (4) |
| 防护前 | 19 | 15<br>(78.95) | 4<br>(21.05) |
| 防护后 | 11 | 11<br>(100)   | 0<br>(0)     |
| 合计  | 30 | 26<br>(86.67) | 4<br>(13.33) |

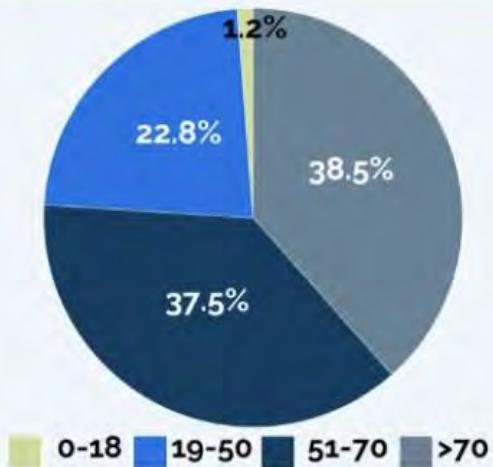
表3 普通型与重症患者接触中及临床特征的比较 ( $\bar{x} \pm s$ )

| 临床资料                            | Mild (26)      | Critical (4)   | t 值    | P 值    |
|---------------------------------|----------------|----------------|--------|--------|
| 体重指数 ( $\text{kg}/\text{m}^2$ ) | $22.0 \pm 1.3$ | $27.0 \pm 2.5$ | -8.382 | <0.001 |
| 接触次数 (次)                        | $7.9 \pm 2.6$  | $24.1 \pm 6.8$ | -6.207 | <0.001 |
| 累计接触时间 (h)                      | $1.9 \pm 1.0$  | $3.0 \pm 0.7$  | -7.162 | <0.001 |
| 平均热程 (d)                        | $3.4 \pm 2.4$  | $8.6 \pm 5.8$  | -3.373 | <0.001 |

Contact frequency

→ 接触次数 (次)

Contact time


→ 累计接触时间 (h)

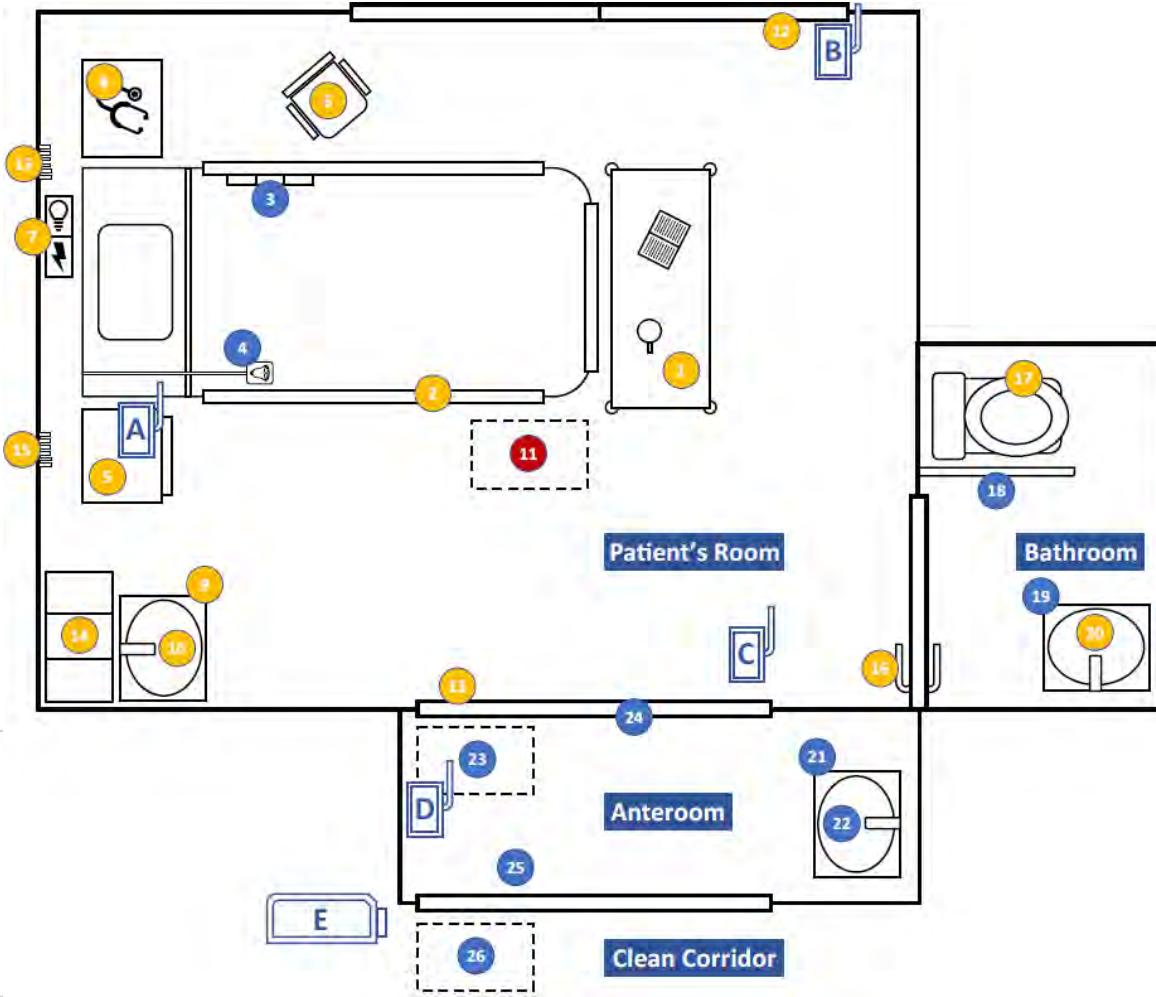
# Integrated surveillance of COVID-19 in Italy

**13.882 cases of COVID-19\***

**1.116 health-care workers<sup>s</sup>**

**803 associated deaths**




| Age (years)  | Deaths [n (%)]    | CFR         |
|--------------|-------------------|-------------|
| 0-9          | 0 (0%)            | 0%          |
| 10-19        | 0 (0%)            | 0%          |
| 20-29        | 0 (0%)            | 0%          |
| 30-39        | 1 (0.1%)          | 0.1%        |
| 40-49        | 1 (0.1%)          | 0.1%        |
| 50-59        | 14 (1.7%)         | 0.6%        |
| 60-69        | 65 (8.1%)         | 2.7%        |
| 70-79        | 274 (34.2%)       | 9.6%        |
| 80-89        | 355 (44.3%)       | 16.6%       |
| >90          | 75 (9.3%)         | 19%         |
| Not reported | 18 (2.2%)         | 3.2%        |
| <b>Total</b> | <b>803 (100%)</b> | <b>5.8%</b> |

# Clinicians' infection rate during SARS

**Table 1 Numbers of Probable Cases of SARS, Deaths, and Healthcare Workers Infected in Selected Countries and Globally**

|             | Cumulative<br>No. of<br>Cases | Deaths<br>No. (%) | Workers<br>Infected<br>No. (%) |
|-------------|-------------------------------|-------------------|--------------------------------|
| Canada      | 251                           | 41 (17)           | 108 (43)                       |
| China       | 5,327                         | 349 (7)           | 1,002 (19)                     |
| Hong Kong   | 1,755                         | 299 (17)          | 386 (22)                       |
| Taiwan      | 346                           | 37 (11)           | 68 (20)                        |
| Philippines | 14                            | 2                 | 4 (29)                         |
| Singapore   | 238                           | 33                | 97 (41)                        |
| Thailand    | 9                             | 2                 | 1 (11)                         |
| Vietnam     | 63                            | 5                 | 36 (57)                        |
| Global      | 8,098                         | 774               | 1,707 (21)                     |

# Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient



JAMA. 2020 Mar 4. doi:  
10.1001/jama.2020.3227

- Red: strong positive results (low Ct value,  $\leq 32$ ).
- Yellow: weak positive results (high Ct value,  $> 32$ ).
- Blue: no positive results.
- Air sampling: negative result
- Letter (A,B,C,D,E): air sample



# High-risk procedures

## Transmission of Severe Acute Respiratory Syndrome during Intubation and Mechanical Ventilation

Robert A. Fowler, Cameron B. Guest, Stephen E. Lapinsky, William J. Sibbald, Marie Louie, Patrick Tang, Andrew E. Simor, and Thomas E. Stewart

Interdepartmental Division of Critical Care Medicine, University of Toronto, Sunnybrook and Women's College Health Sciences Centre; Intensive Care Unit, Mount Sinai Hospital; and Department of Microbiology, Division of Infectious Diseases, University of Toronto, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada

Nosocomial transmission of severe acute respiratory syndrome from critically ill patients to healthcare workers has been a prominent and worrisome feature of existing outbreaks. We have observed a greater risk of developing severe acute respiratory syndrome for physicians and nurses performing endotracheal intubation (relative risk [RR], 13.29; 95% confidence interval [CI], 2.99 to 59.04;  $p = 0.003$ ). Nurses caring for patients receiving noninvasive positive-pressure ventilation may be at an increased risk (RR, 2.33; 95% CI, 0.25 to 21.76;  $p = 0.5$ ), whereas nurses caring for patients receiving high-frequency oscillatory ventilation do not appear at an increased risk (RR, 0.74; 95% CI, 0.11 to 4.92;  $p = 0.6$ ) compared with their respective reference cohorts. Specific infection control recommendations concerning the care of critically ill patients may help limit further nosocomial transmission.

Am J Respir Crit  
Care Med 2004:  
1198–1202

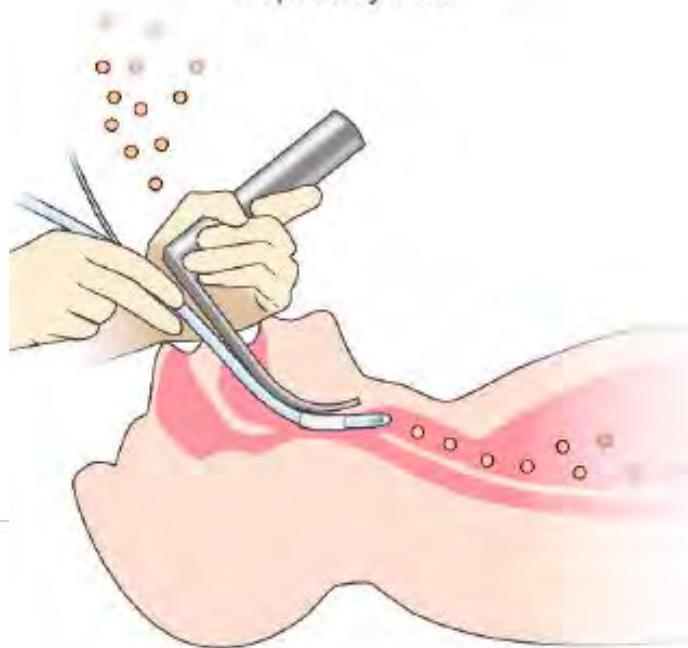
# Influenza Aerosols in UK Hospitals during the H1N1 (2009) Pandemic – The Risk of Aerosol Generation during Medical Procedures

Plus one 2013; 8: e56278

Katy-Anne Thompson<sup>1\*</sup>, John V. Pappachan<sup>2</sup>, Allan M. Bennett<sup>1</sup>, Himanshu Mittal<sup>3</sup>, Susan Macken<sup>1</sup>, Brian K. Dove<sup>4</sup>, Jonathan S. Nguyen-Van-Tam<sup>5</sup>, Vicky R. Copley<sup>6</sup>, Sarah O'Brien<sup>7</sup>, Peter Hoffman<sup>8</sup>, Simon Parks<sup>1</sup>, Andrew Bentley<sup>9</sup>, Barbara Isalska<sup>10</sup>, Gail Thomson<sup>11</sup>, on behalf of the EASE Study Consortium<sup>1</sup>

| Procedure                    | Number of sampling occasions (number of patients) | % RNA collected >7.3 $\mu$ m | % RNA collected 4–7.3 $\mu$ m | % RNA collected 0.86–4 $\mu$ m | Median copy no./l (inter-quartile range) for samples with at least one stage with detectable RNA |
|------------------------------|---------------------------------------------------|------------------------------|-------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|
| Baseline                     | 76 (39)                                           | 78.7                         | 11.1                          | 10.2                           | 7,913 (2,436–11,613)                                                                             |
| Bronchoscopy                 | 3 (3)                                             | 24.9                         | 45.2                          | 29.9                           | 148,805 (12,735–284,875)                                                                         |
| Respiratory & Airway Suction | 14 (11)                                           | 22.4                         | 29.7                          | 47.9                           | 1,852 (1,543–2,7521)                                                                             |
| Intubation                   | 5 (4)                                             | 0.0                          | 100.0                         | 0.0                            | 2,838 (2,838–2,838)                                                                              |

Review


# Nosocomial Transmission of Emerging Viruses via Aerosol-Generating Medical Procedures

Viruses 2019, 11: 940

Seth D. Judson <sup>1,2</sup>  and Vincent J. Munster <sup>2,\*</sup> <sup>1</sup> Department of Medicine, University of Washington, Seattle, WA 98195, USA; sethjudson@gmail.com<sup>2</sup> Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA

\* Correspondence: munstervj@niaid.nih.gov; Tel.: +1-406-375-7489

Induced aerosol generation in respiratory tract



Mechanical aerosol generation in respiratory tract



Examples: Intubation, Bronchoscopy, CPR

Examples: Ventilation, Suctioning

**Table 1.** Potential aerosol-generating medical procedures involved in nosocomial virus transmission.

| AGMP                                            | How/Where Aerosols May Be Generated                          |
|-------------------------------------------------|--------------------------------------------------------------|
| Bronchoscopy *                                  | Induced cough, respiratory tract                             |
| Cardiopulmonary resuscitation *                 | Induced cough, respiratory tract                             |
| Noninvasive ventilation *<br>(BiPAP, CPAP, HFV) | Possible mechanical dispersal of aerosols, respiratory tract |
| Tracheal intubation *                           | Induced cough, respiratory tract                             |
| Manual ventilation *                            | Possible mechanical dispersal of aerosols, respiratory tract |
| Surgery                                         | Cutting bone and tendon, and irrigation aerosolize blood     |
| Sputum induction                                | Induced cough, respiratory tract                             |
| Nebulizer treatment                             | Possible mechanical dispersal of aerosols, respiratory tract |
| Suctioning                                      | Possible mechanical dispersal of aerosols, respiratory tract |
| Laser plume                                     | Mechanical dispersal of aerosols                             |

**Table 1:** Risk of SARS Transmission to HCWs Exposed and Not Exposed to Aerosol-Generating Procedures, and Aerosol-Generating Procedures as Risk Factors for SARS Transmission



| Aerosol-Generating Procedures                  | OR (95% CI)                                                                                                                         |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Tracheal intubation (4 cohort studies)         | 3.0 (1.4, 6.7) <sup>25</sup><br>22.8 (3.9, 131.1) <sup>26</sup><br>13.8 (1.2, 161.7) <sup>27</sup><br>5.5 (0.6, 49.5) <sup>29</sup> |
|                                                | Pooled estimate ( $I^2 = 39.6\%$ ) 6.6 (2.3, 18.9)                                                                                  |
| Tracheal intubation (4 case-control studies)   | 0.7 (0.1, 3.9) <sup>23</sup><br>9.2 (4.2, 20.2) <sup>21</sup><br>8.0 (3.9, 16.6) <sup>20</sup><br>9.3 (2.9, 30.2) <sup>24</sup>     |
|                                                | Pooled estimate ( $I^2 = 61.4\%$ ) 6.6 (4.1, 10.6)                                                                                  |
| Suction before intubation (2 cohort studies)   | 13.8 (1.2, 161.7) <sup>27</sup><br>1.7 (0.7, 4.2) <sup>25</sup>                                                                     |
|                                                | Pooled estimate ( $I^2 = 59.2\%$ ) 3.5 (0.5, 24.6)                                                                                  |
| Suction after intubation (2 cohort studies)    | 0.6 (0.1, 3.0) <sup>27</sup><br>1.8 (0.8, 4.0) <sup>25</sup>                                                                        |
|                                                | Pooled estimate ( $I^2 = 28.8\%$ ) 1.3 (0.5, 3.4)                                                                                   |
| Nebulizer treatment (3 cohort studies)         | 6.6 (0.9, 50.5) <sup>27</sup><br>0.1 (0.0*, 1.0) <sup>28</sup><br>1.2 (0.1, 20.7) <sup>25</sup>                                     |
|                                                | Pooled estimate ( $I^2 = 73.1\%$ ) 0.9 (0.1, 13.6)                                                                                  |
| Manipulation of oxygen mask (2 cohort studies) | 17.0 (1.8, 165.0) <sup>27</sup><br>2.2 (0.9, 4.9) <sup>25</sup>                                                                     |
|                                                | Pooled estimate ( $I^2 = 64.8\%$ ) 4.6 (0.6, 32.5)                                                                                  |
| Bronchoscopy (2 cohort studies)                | 3.3 (0.2, 59.6) <sup>27</sup><br>1.1 (0.1, 18.5) <sup>25</sup>                                                                      |
|                                                | Pooled estimate ( $I^2 = 0\%$ ) 1.9 (0.2, 14.2)                                                                                     |
| Non-invasive ventilation (2 cohort studies)    | 2.6 (0.2, 34.5) <sup>26</sup><br>3.2 (1.4, 7.2) <sup>25</sup>                                                                       |
|                                                | Pooled estimate ( $I^2 = 0\%$ ) 3.1 (1.4, 6.8)                                                                                      |

Canadian Agency for  
Drugs and Technologies  
in Health

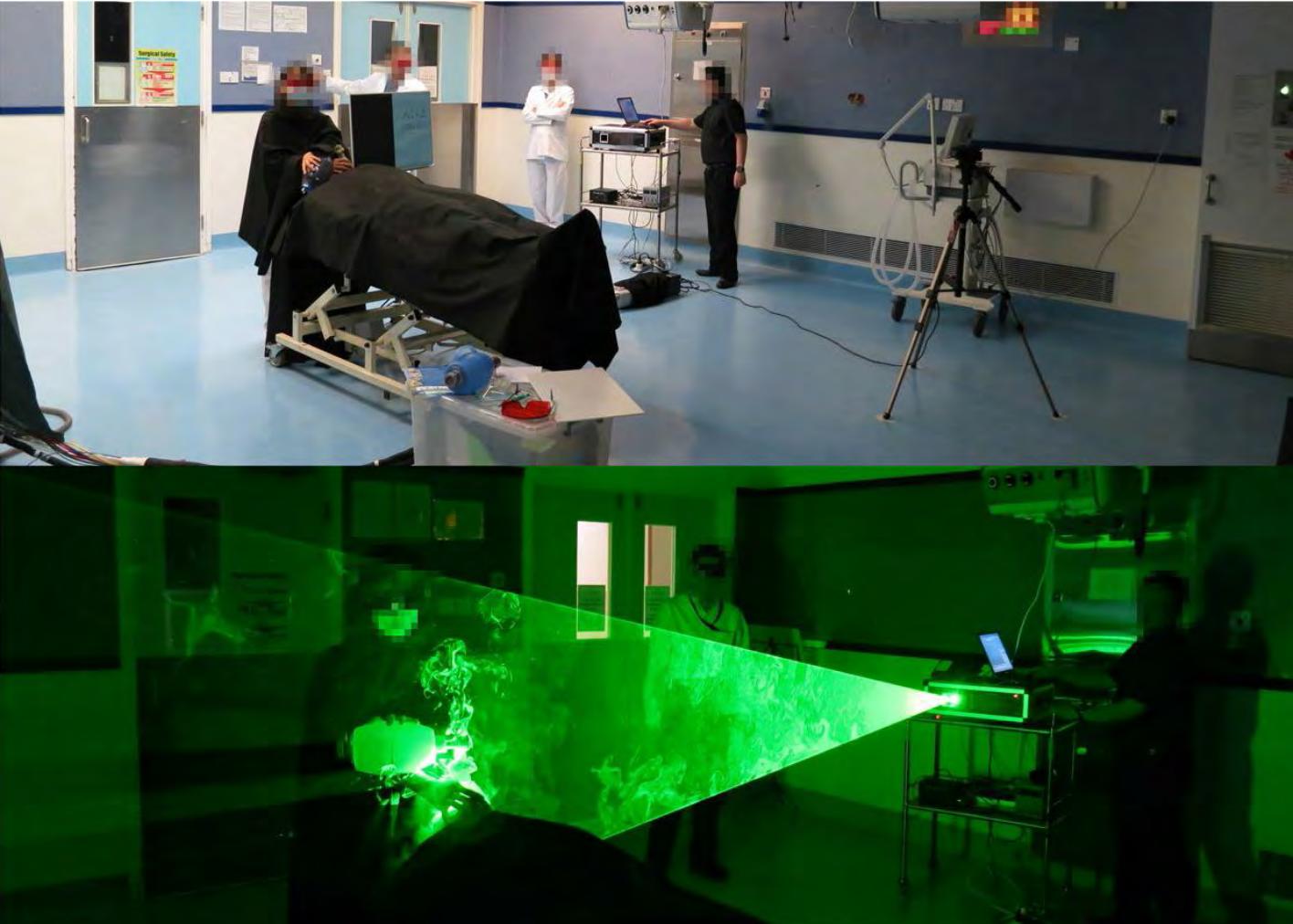
Agence canadienne  
des médicaments et des  
technologies de la santé

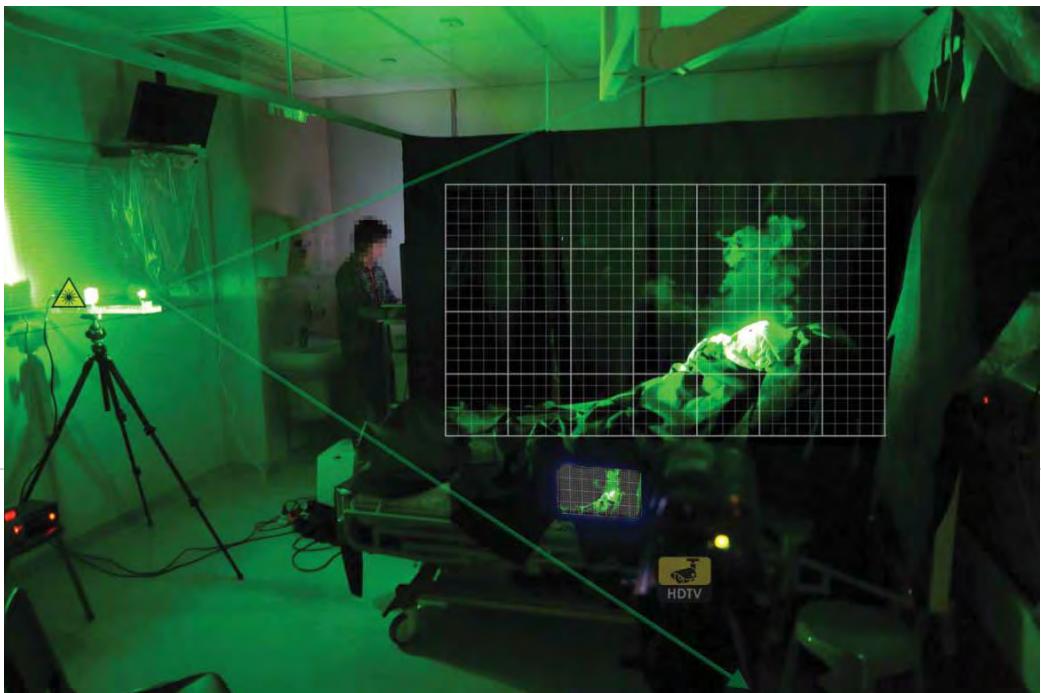
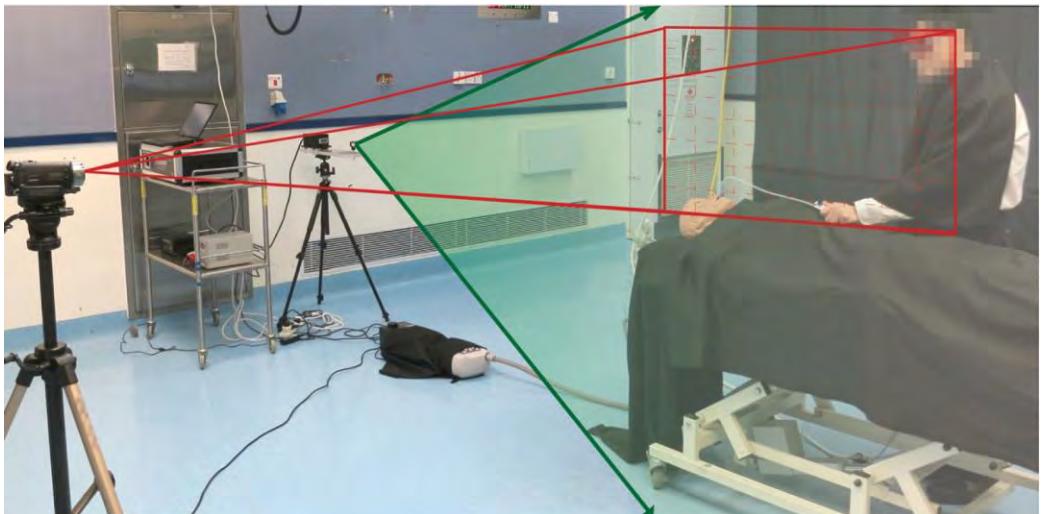
**RAPID RESPONSE REPORT:**  
Systematic Review

CADTH

Aerosol-Generating Procedures and Risk of  
Transmission of Acute Respiratory Infections : A  
Systematic Review

November 2011

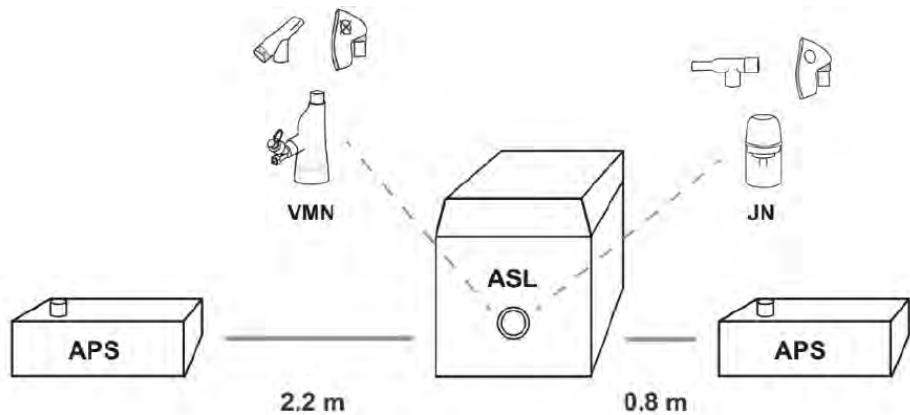

# High-risk procedures and interventions



- Cough and mask
- Oxygen therapy
  - Nasal cannula
  - Oxygen mask: simple mask, venturi mask, nonbreather mask
  - High flow nasal cannula
- **Nebulization**
- Noninvasive ventilation
  - Settings
  - Masks
- Manual ventilation
- Intubation
- Suctioning
- Bronchoscopy examination
- Personal protection equipment (PPE)

# Methods utilized in studies investigated aerosol dispersion/transmission

- In vitro studies
  - Exhaled gas dispersion distance
  - Aerosol/droplet particle mass/count concentration
- In vivo studies
  - Aerosol/droplet particle mass/count concentration
  - RT-PCR test for air sample

# Exhaled gas dispersion distance measurement






## Flow visualization:

- **Smoke particles of  $<1 \mu\text{m}$  in diameter, produced by a M-6000 smoke generator (N19, DS Electronics, Sydney, Australia) was used to highlight exhaled airflow**
- A 6 FG catheter was inserted into the right main bronchus of the HPS to deliver smoke particles.
- After mixing with alveolar gas, smoke particles were exhaled through the normal airway passage.
- Leakage jet plume were then illuminated by a green (532 nm wavelength) laser light-sheet using a continuous pulse, diode-pumped solid state laser generator (OEM UGH-800 mW, LambdaPro Technologies, China)

# Aerosol/droplet particle mass/count concentration



Pharmaceutics 2019, 11, 75

# Air sampling

- RT-PCR test
- A method used to find out what airborne contaminants are present in your environment.
  - Air is collected by using various methods and then, it is tested for the presence and concentration of hazardous substances and microorganisms



# Natures of aerosol

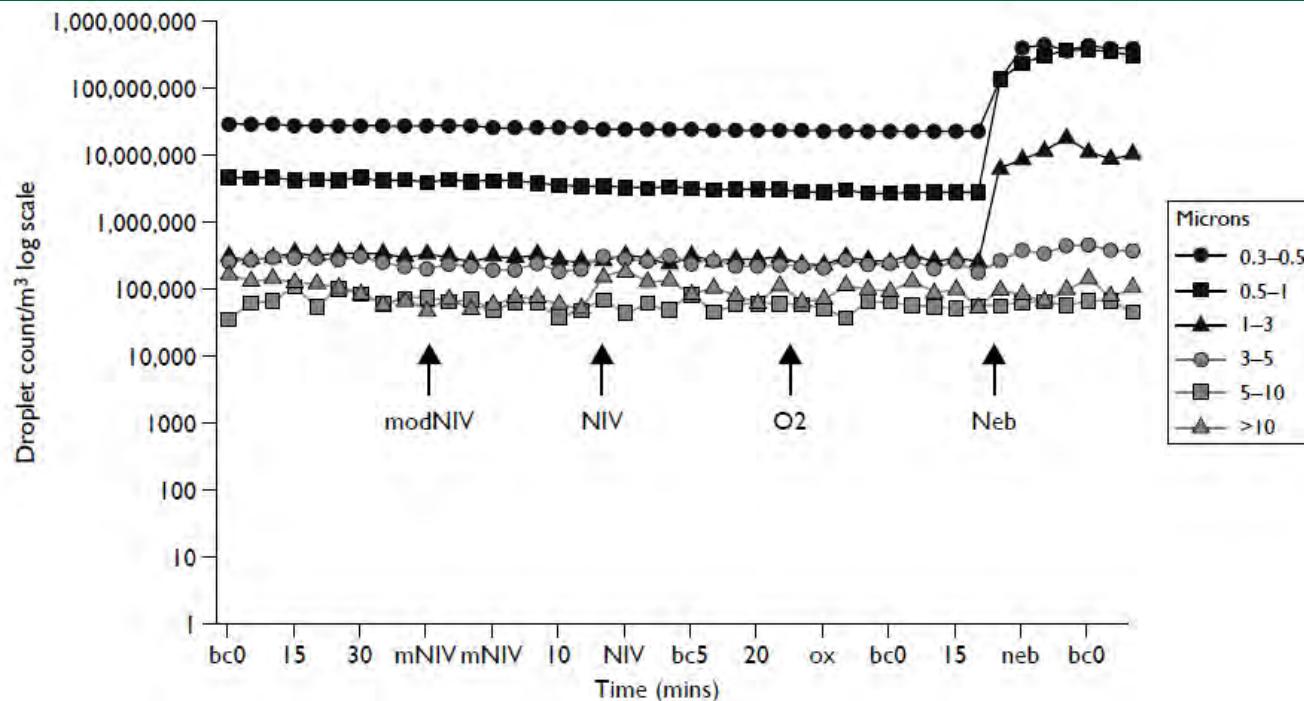
- Bioaerosol
  - Generated by patients during coughing, breathing, or talking, laughing
- Medical aerosol
  - Generated by aerosol device, including MDI, DPI, SVN, VMN, USN, etc



# When medical aerosol is contaminated?

- During medication/ device preparation
  - repeated use of SVN
- During inhalation /nebulization
  - Patient's secretion drops into SVN reservoir
- When inhaled aerosol is exhaled and carried with pathogen
  - Not sure

# Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections




*Health Technology  
Assessment* 2010; 14(46),  
131–172

AK Simonds,<sup>1,\*</sup> A Hanak,<sup>1</sup> M Chatwin,<sup>1</sup>  
MJ Morrell,<sup>1</sup> A Hall,<sup>2</sup> KH Parker,<sup>3</sup> JH Siggers<sup>3</sup>  
and RJ Dickinson<sup>3</sup>

Three groups were studied:

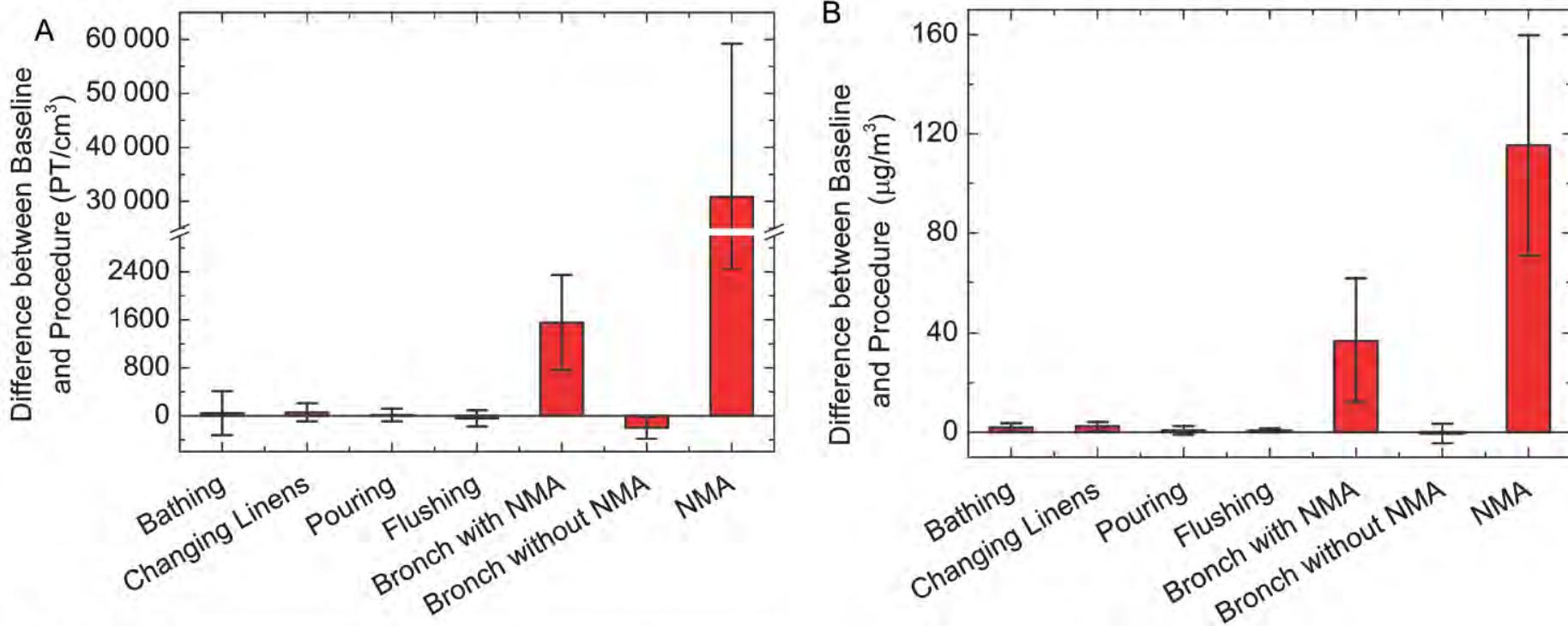
- (1) normal controls,
- (2) subjects with coryzal symptoms
- (3) adult patients with chronic lung disease who were admitted to hospital with an infective exacerbation.



Nebulised saline delivered droplets in the **small and medium-size** aerosol/droplet range, but did not increase large-size droplet count

TABLE 4 Effect of intervention in droplet ranges D – difference between mean value pre and during intervention (continued)

| Microns          | D1 | 0.3–0.5 | 0.5–1   | 1–3     | 3–5     | 5–10    | >10     | D2      | 0.3–0.5 | 0.5–1   | 1–3     | 3–5   | 5–10  | >10 |
|------------------|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|-------|-----|
| <b>Physio</b>    |    |         |         |         |         |         |         |         |         |         |         |       |       |     |
| Patient          | D  | –0.005  | 0.057   | 0.123   | 0.128   | –0.010  | 1.393   | –0.011  | 0.024   | 0.070   | 0.169   | 0.175 | 0.424 |     |
|                  | p  | 0.610   | 0.118   | 0.164   | 0.260   | 0.511   | 0.003   | 0.702   | 0.206   | 0.151   | 0.134   | 0.228 | 0.158 |     |
| <b>Nebuliser</b> |    |         |         |         |         |         |         |         |         |         |         |       |       |     |
| Normal           | D  | 15.660  | 109.480 | 71.681  | 27.054  | 404.932 | 2.270   | 25.878  | 87.932  | 46.887  | 1.549   | 0.232 | 0.207 |     |
|                  | p  | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.120 | 0.270 |     |
| Patient          | D  | 15.516  | 91.193  | 56.320  | 3.967   | 0.426   | 0.253   | 23.080  | 90.576  | 45.920  | 1.642   | 0.149 | 0.309 |     |
|                  | p  | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.111   | 0.261   | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.241 | 0.281 |     |
| Coryzal          | D  | 11.204  | 64.822  | 38.341  | 1.871   | 0.197   | 0.349   | 17.994  | 49.458  | 30.454  | 1.144   | 0.234 | 0.384 |     |
|                  | p  | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.229   | 0.192   | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.097 | 0.133 |     |


D1, distance 1; D2, distance 2; p, p-value.  
p-values <0.05 are highlighted in bold text.

# Characterization of Aerosols Generated During Patient Care Activities

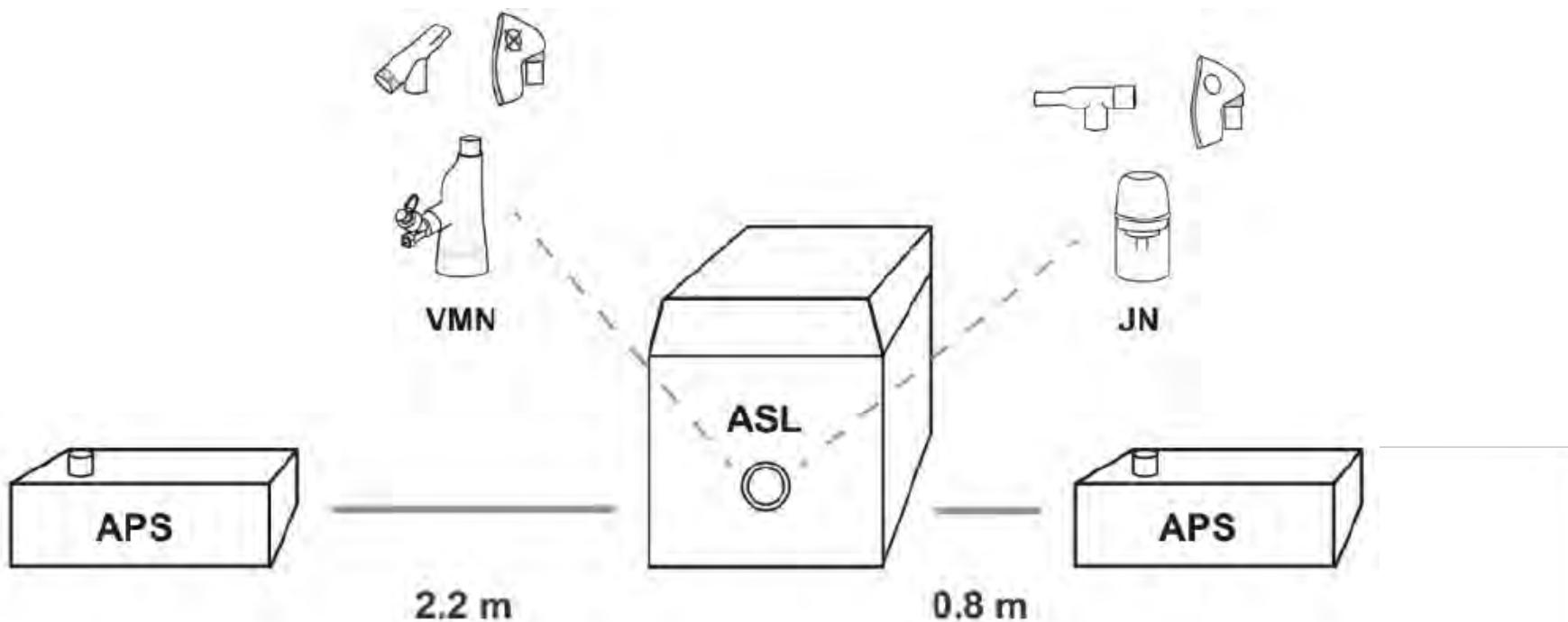
Caroline A. O'Neil,<sup>1</sup> Jiayu Li,<sup>2</sup> Anna Leavey,<sup>2</sup> Yang Wang,<sup>2</sup> Matthew Hink,<sup>1</sup> Meghan Wallace,<sup>3</sup> Pratim Biswas,<sup>2</sup> Carey-Ann D. Burnham,<sup>3</sup> and Hilary M. Babcock<sup>1</sup>; for the Centers for Disease Control and Prevention Epicenters Program

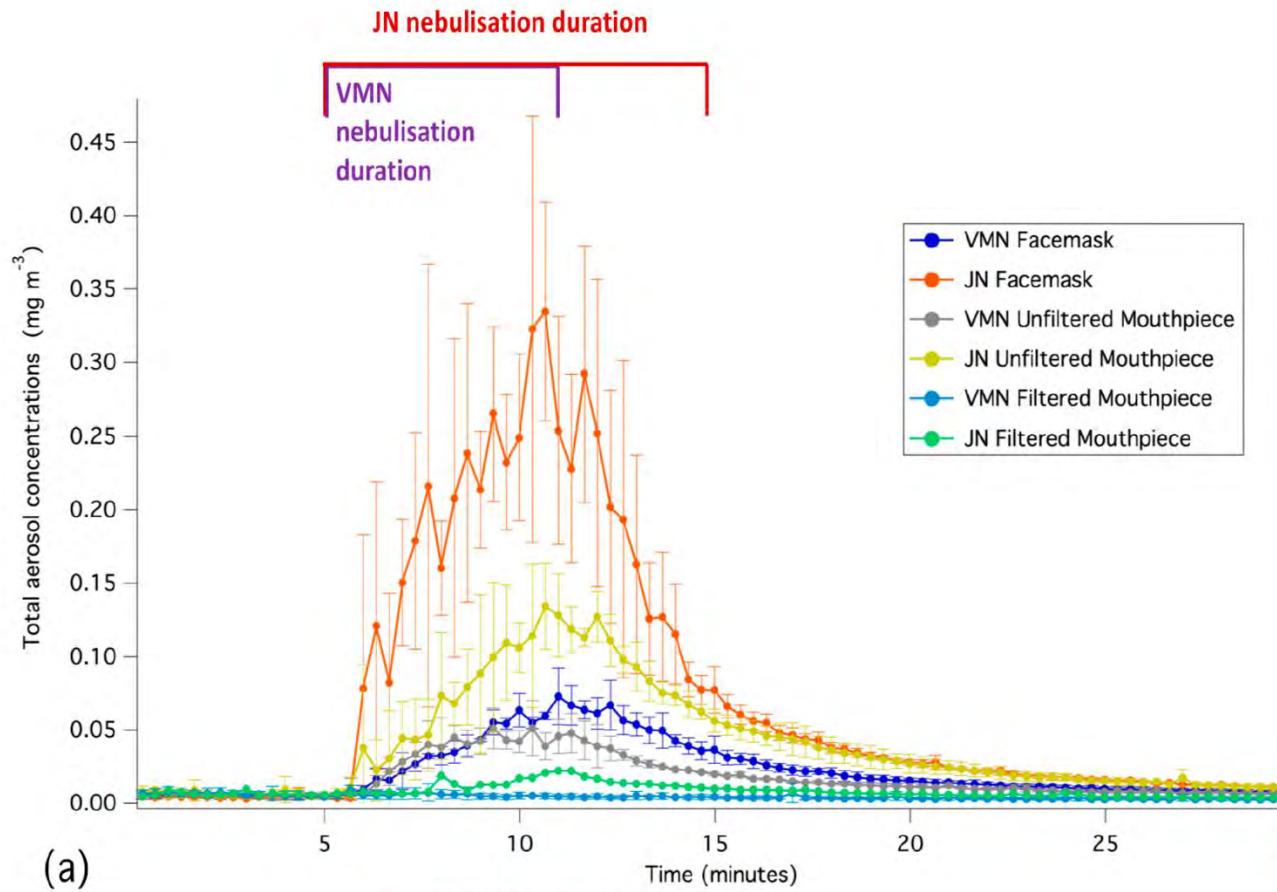
<sup>1</sup>School of Medicine, Infectious Diseases Division, <sup>2</sup>School of Engineering and Applied Science, Department of Energy, Environmental, and Chemical Engineering, Aerosol and Air Quality Research Laboratory, and <sup>3</sup>School of Medicine, Department of Pathology and Immunology, Washington University, St Louis, Missouri

Clinical Infectious Diseases® 2017;65(8):1342–8



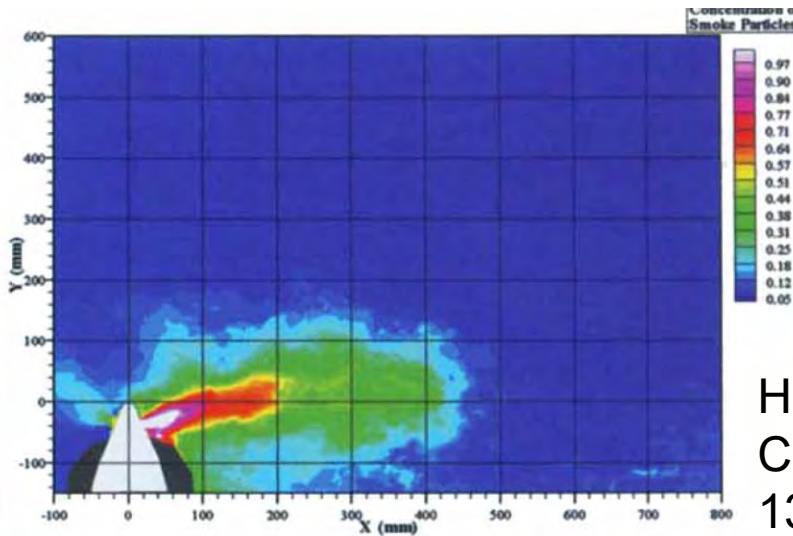
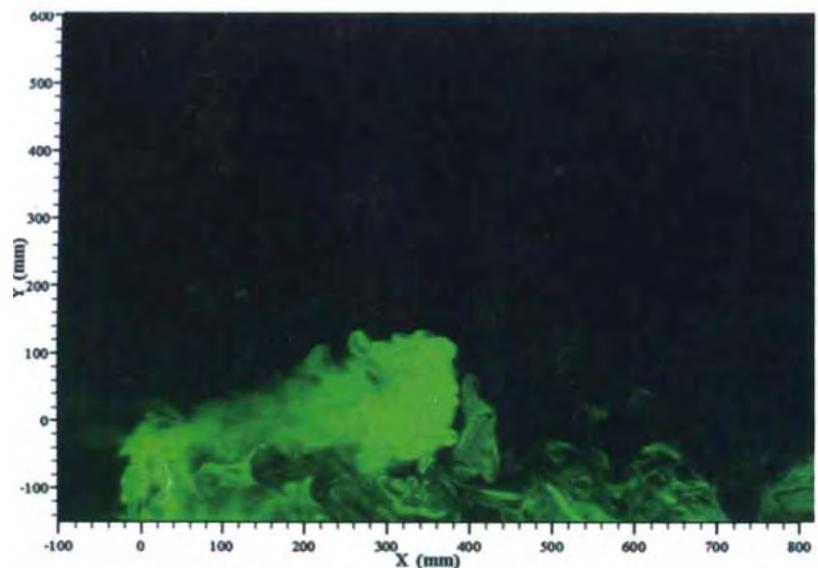
Article


# Investigation of the Quantity of Exhaled Aerosols Released into the Environment during Nebulisation

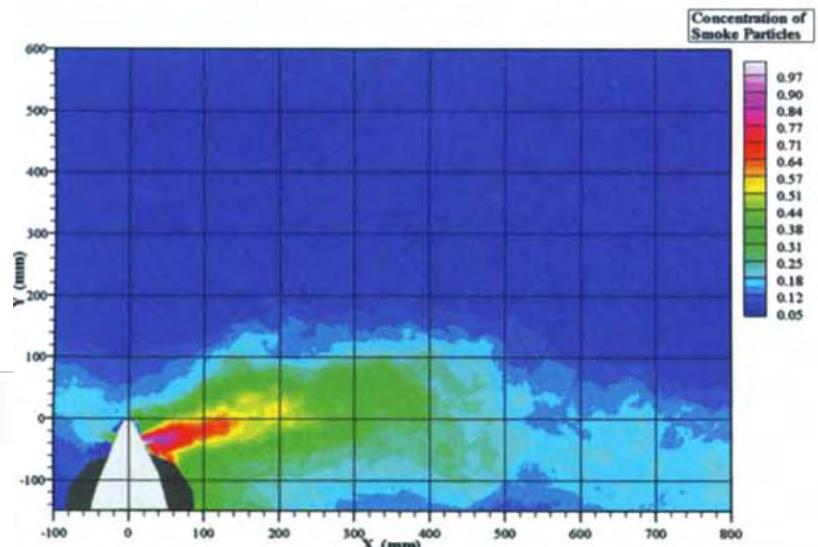

James A. McGrath <sup>1,\*</sup>, Andrew O'Sullivan <sup>2</sup>, Gavin Bennett <sup>2</sup>, Ciarraí O'Toole <sup>1</sup>, Mary Joyce <sup>2</sup>, Miriam A. Byrne <sup>1</sup> and Ronan MacLoughlin <sup>2</sup> **Pharmaceutics** **2019**, **11**, 75

<sup>1</sup> School of Physics & Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, Galway H91 CF50, Ireland; C.OTOOLE9@nuigalway.ie (C.O.); miriam.byrne@nuigalway.ie (M.A.B.)

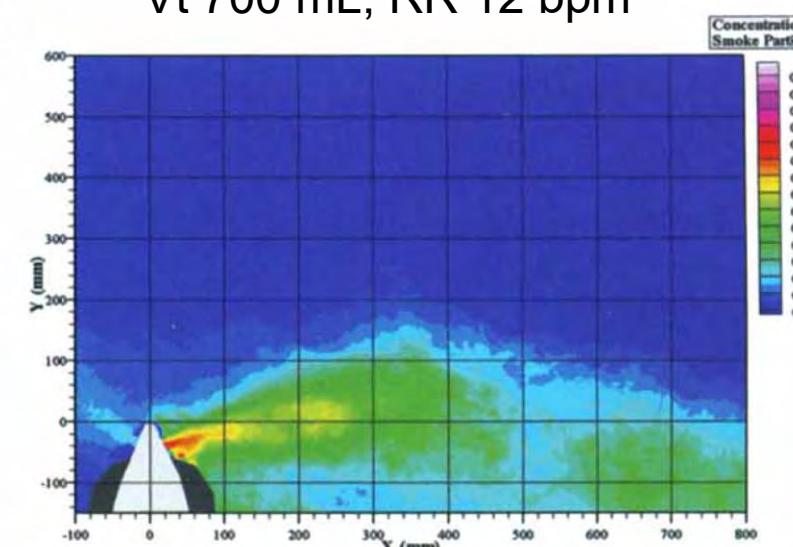
<sup>2</sup> Aerogen, IDA Business Park, Dangan, Galway H91 HE94, Ireland; andrewosullivanjr@gmail.com (A.O.); GBennett@aerogen.com (G.B.); MJoyce@aerogen.com (M.J.); RMacLoughlin@aerogen.com (R.M.)



\* Correspondence: james.a.mcgrath@nuigalway.ie






| Nebuliser Type           | Facemask ( $\text{mg m}^{-3}$ ) | Unfiltered Mouthpiece ( $\text{mg m}^{-3}$ ) | Filtered Mouthpiece ( $\text{mg m}^{-3}$ ) |
|--------------------------|---------------------------------|----------------------------------------------|--------------------------------------------|
| Jet Nebuliser            | $0.072 \pm 0.001$               | $0.039 \pm 0.004$                            | $0.009 \pm 0.001$                          |
| Vibrating Mesh Nebuliser | $0.022 \pm 0.001$               | $0.017 \pm 0.002$                            | $0.004 \pm 0.001$                          |


# Nebulization



Vt 700 mL, RR 12 bpm



Vt 300 mL, RR 25 bpm

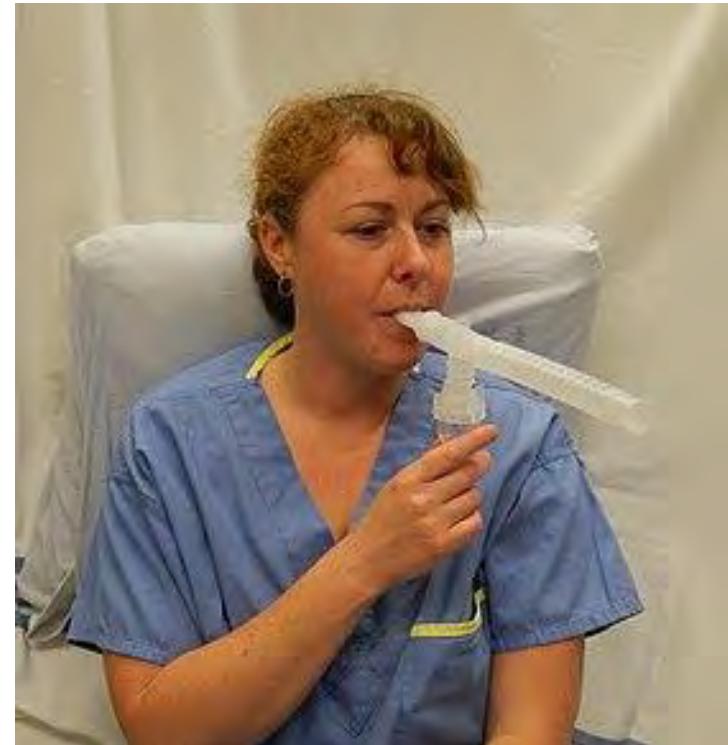
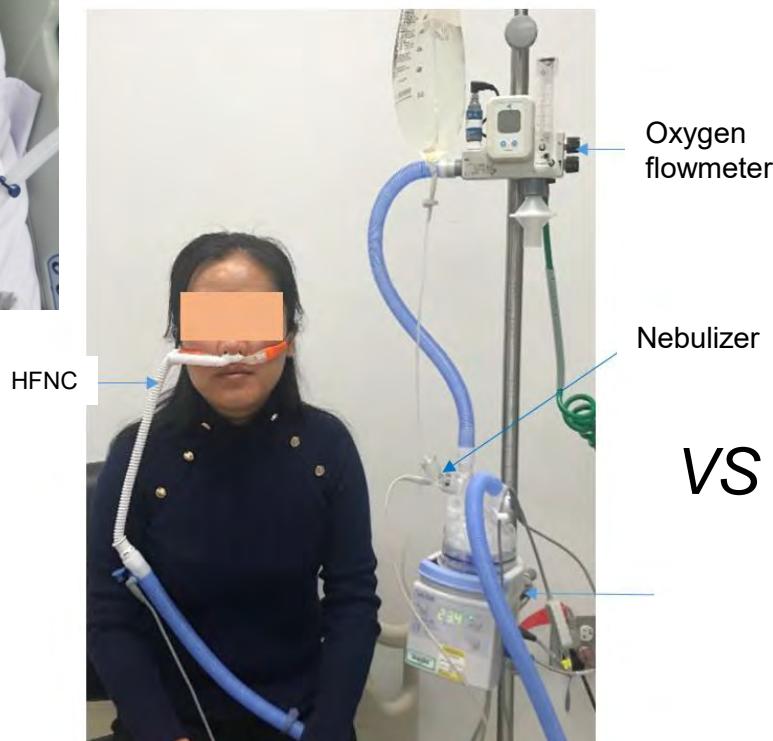


Vt 150 mL, RR 40 bpm

Hui et al.  
Chest 2009;  
135: 648-654.

**Table 2—A Summary of Maximum Exhaled Air Dispersion Distances During Application of Different Types of Respiratory Therapy to the HPS Under Different Lung Settings\***

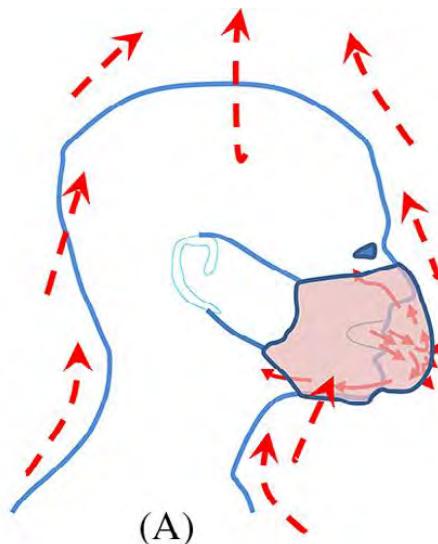
| NPPV (Mild Lung Injury)† | Simple Oxygen Mask (Mild Lung Injury)‡ |             | Jet Nebulizer Driven by Air at 6 L/min (Current Study) |             |                    |             |
|--------------------------|----------------------------------------|-------------|--------------------------------------------------------|-------------|--------------------|-------------|
|                          | IPAP/EPAP, cm H <sub>2</sub> O         | Distance, m | L/min                                                  | Distance, m | Injury             | Distance, m |
| 10/4                     | 0.40                                   |             | 4                                                      | 0.20        | Normal             | 0.45        |
| 14/4                     | 0.42                                   |             | 6                                                      | 0.22        | Mild lung injury   | 0.54        |
| 18/4                     | 0.45                                   |             | 8                                                      | 0.30        | Severe lung injury | > 0.80      |
|                          |                                        |             | 10                                                     | 0.40        |                    |             |



# Comments

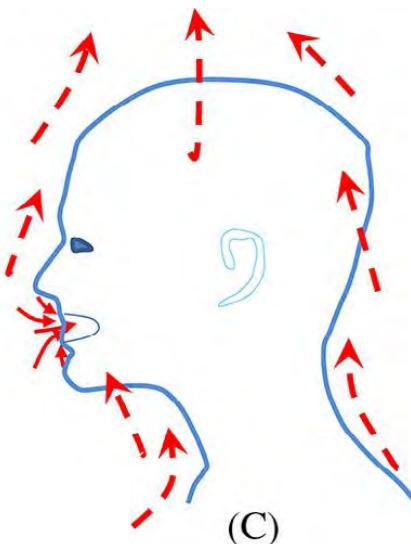
- All the studies only reported the aerosol concentration in the ambient air increased during nebulization
  - Expected, as this is the purpose of the treatment
  - None of them can differentiate medical aerosol vs bioaerosol

# Resolution

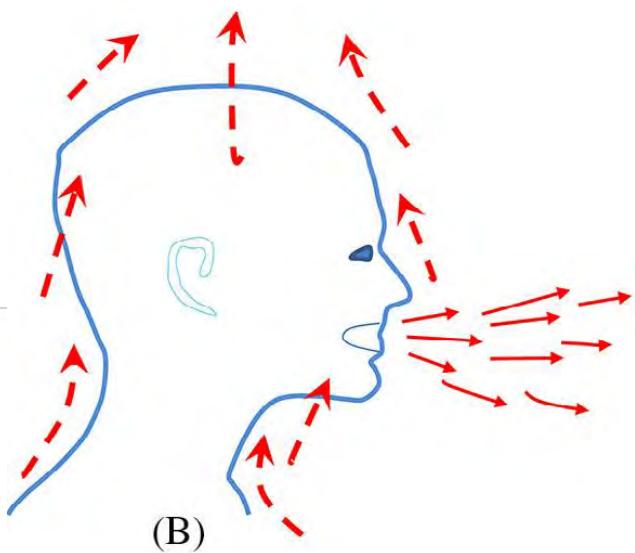
- Avoid unnecessary nebulization and cough inducing aerosolized medication including hypertonic saline, as it is high-risk transmission procedure
- For spontaneous breathing patients
  - Preferred MDI+Spacer;
  - If MDI is not available, or medication is in the form of solution
    - VMN with handheld and mouthpiece/mask (preferred mouthpiece and place a filter at the other end of mouthpiece), oxygen flow set at 2-8 L/min
    - In-line placement of VMN with HFNC, place surgical mask on patient's face during nebulization;
  - If SVN is the only choice, use one-way valve SVN set up or connect a filter to SVN
- For invasively ventilated patients: place mesh nebulizer at the inlet of humidifier to deliver aerosol therapy


# Place a nebulizer in-line with HFNC

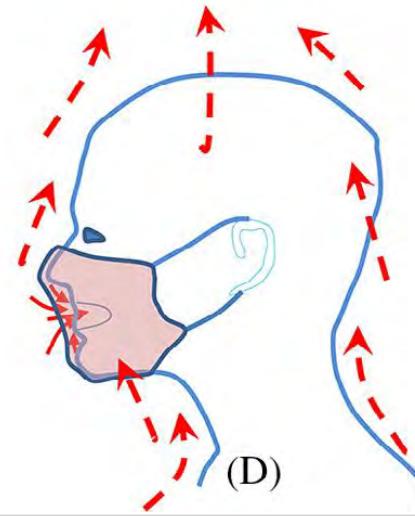



Inhaled dose in vivo scintigraphy study:  
 $17.23 \pm 6.78\%$

Inhaled dose: 10-20%


# Effects of wearing a mask



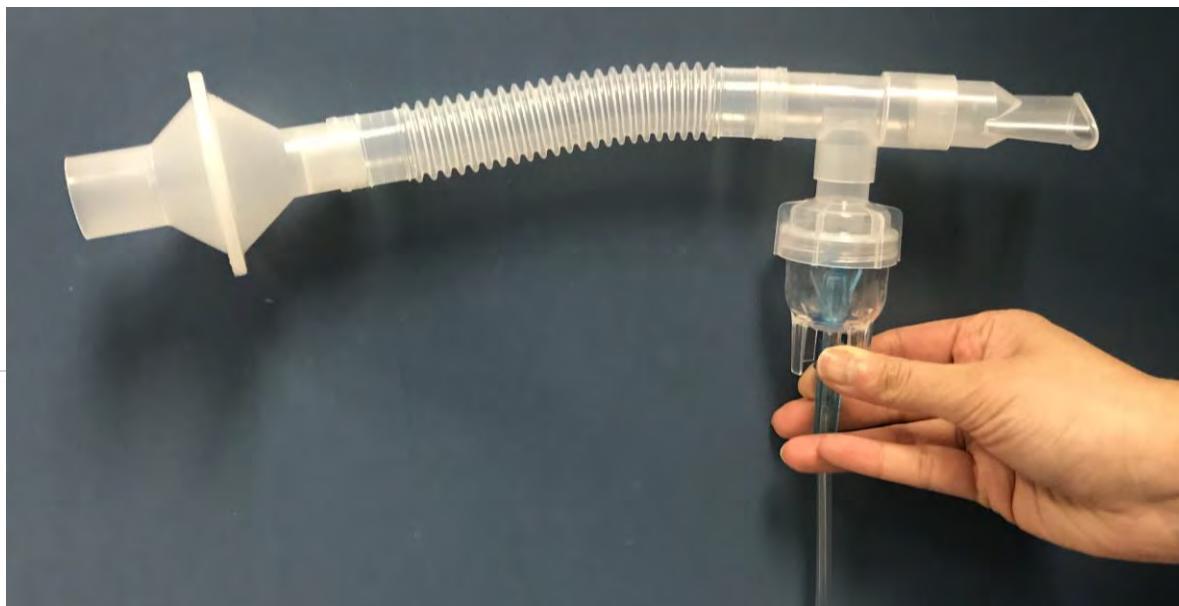

(A)



(C)



(B)




(D)

*American Journal of  
Infection Control 2016;  
44: S102-S108*



One-way valve with SVN  
set up



SVN with filter

# Cough & wearing a mask

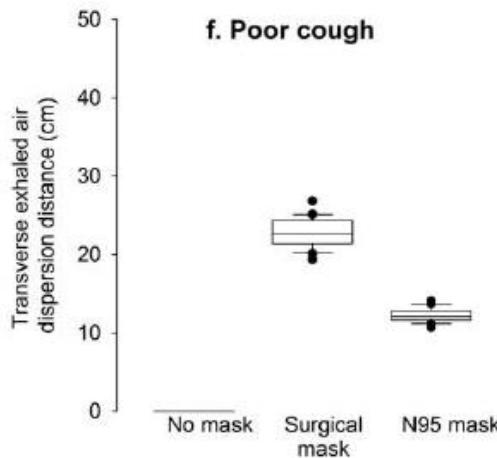
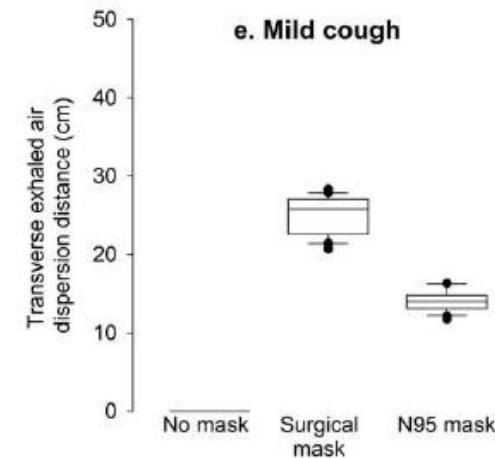
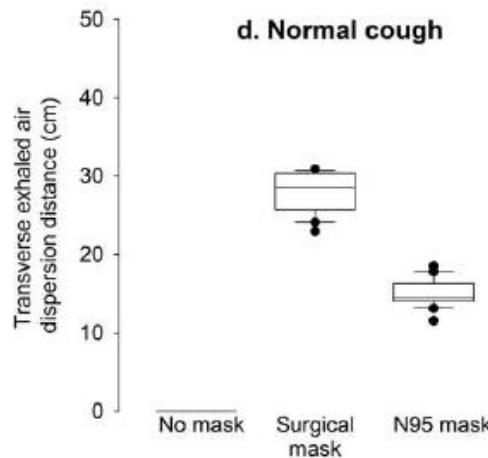
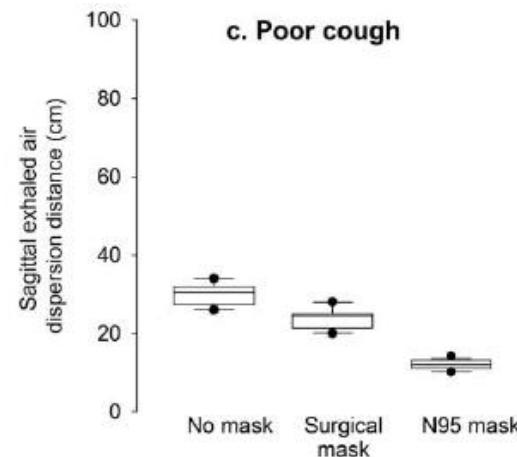
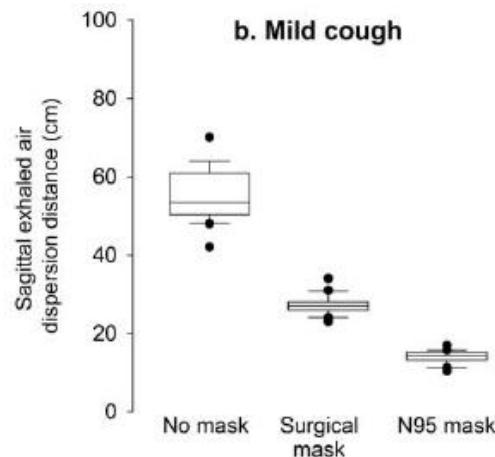
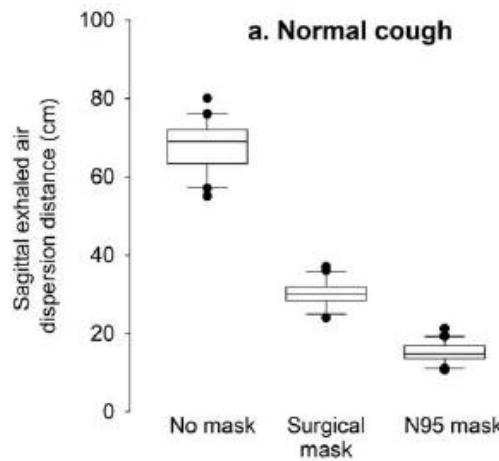
Table 1. Efficacy of surgical and N95 masks to filter influenza in point-of-care assay-positive patients.

| Patient or variable                                      | Influenza type | Nasal swab | Cycle number                     |                     |                        |                                 | Duration of illness, days per week |
|----------------------------------------------------------|----------------|------------|----------------------------------|---------------------|------------------------|---------------------------------|------------------------------------|
|                                                          |                |            | No mask, before control (step 1) | N95 mask (step 2)   | Surgical mask (step 3) | No mask, after control (step 4) |                                    |
| <b>Patient</b>                                           |                |            |                                  |                     |                        |                                 |                                    |
| 1                                                        | A              | 31         | 38                               | Negative            | Negative               | 39                              | 3                                  |
| 2                                                        | A              | 26         | 40                               | Negative            | Negative               | Negative                        | 1                                  |
| 3                                                        | A              | 22         | Negative                         | Negative            | Negative               | 40                              | 3                                  |
| 4                                                        | A              | 26         | 34                               | Negative            | Negative               | 35                              | 1                                  |
| 5                                                        | A              | 23         | 32                               | Negative            | Negative               | 33                              | 2                                  |
| 6                                                        | A              | 25         | 27                               | Negative            | Negative               | 25                              | 1                                  |
| 7                                                        | B              | 22         | 38                               | Negative            | Negative               | 27                              | 2                                  |
| 8                                                        | A              | 29         | 34                               | Negative            | Negative               | Negative                        | 3                                  |
| 9                                                        | B              | 27         | Negative                         | Negative            | Negative               | 39                              | 3                                  |
| Mean cycle time for patients with detected influenza A   |                | ...        | 26 <sup>a</sup>                  | 34.17 <sup>a</sup>  | 0                      | 0                               | 34.4 <sup>a</sup>                  |
| Estimated viral load for detected influenza A, copies/mL |                | ...        | 5 million <sup>a</sup>           | 50,000 <sup>a</sup> | 0                      | 0                               | 50,000 <sup>a</sup>                |
|                                                          |                |            |                                  |                     |                        |                                 |                                    |

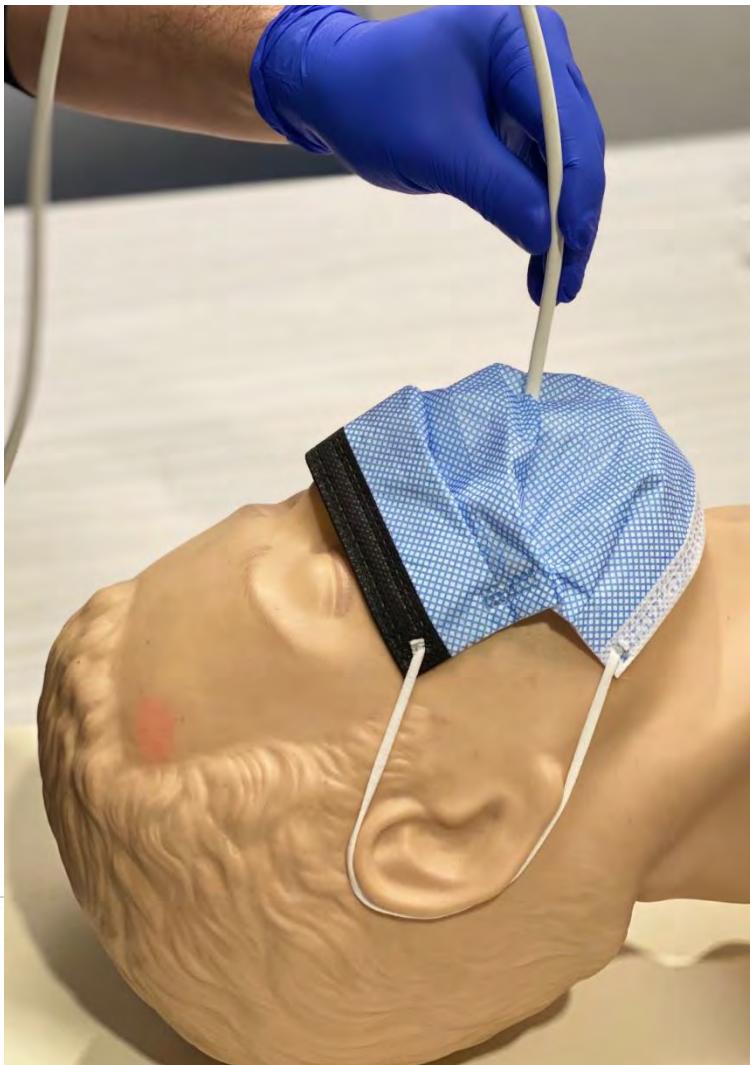
Step: (1) coughing without a mask (before control)  
 (2) coughing while wearing a fitted N95 mask  
 (3) coughing while wearing a routine surgical mask  
 (4) coughing without a mask (after control)

Johnson et al, Brief report  
 2009, 49: 275

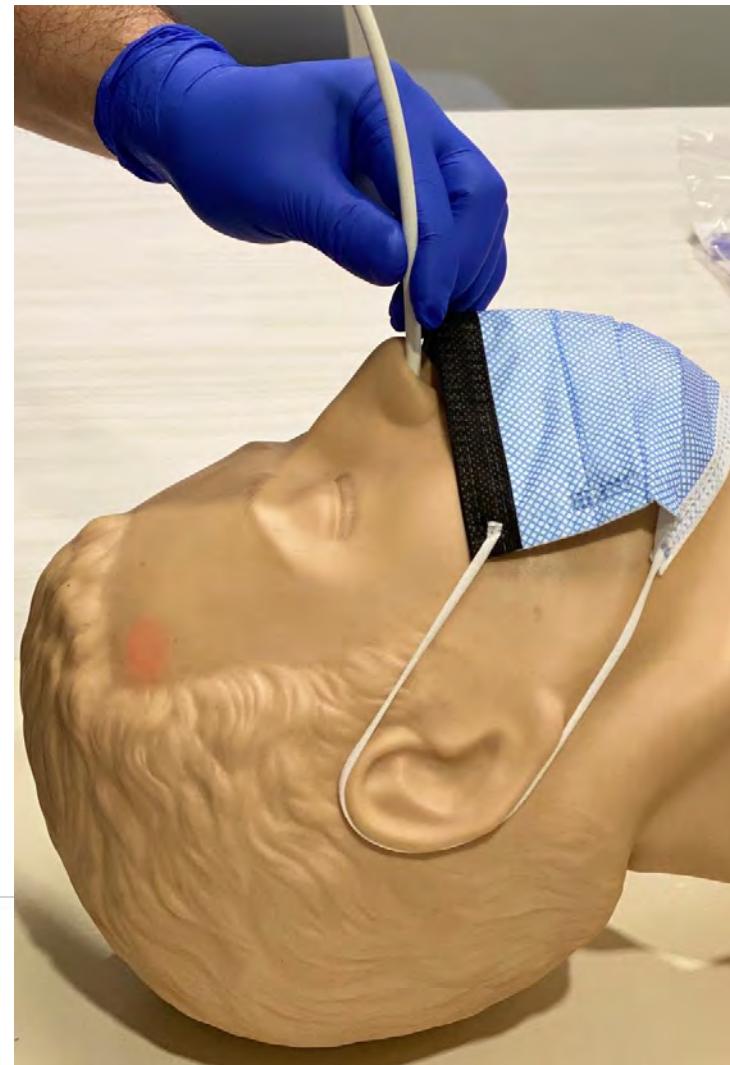
# Exhaled Air Dispersion during Coughing with and without Wearing a Surgical or N95 Mask







SITY  
TER

David S. Hui<sup>1,2\*</sup>, Benny K. Chow<sup>2,3</sup>, Leo Chu<sup>4</sup>, Susanna S. Ng<sup>1</sup>, Nelson Lee<sup>1,2</sup>, Tony Gin<sup>4</sup>,


Matthew T. V. Chan<sup>4</sup>

Plus one 2012; 7(12): e50845.


**1** Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China, **2** Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China, **3** Center for Housing Innovations, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China, **4** Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China



# Recommendation for bronchoscopy examination



Bronchoscope inserted via mouth



Bronchoscope inserted via nose

# Oxygen therapy



Nasal cannula

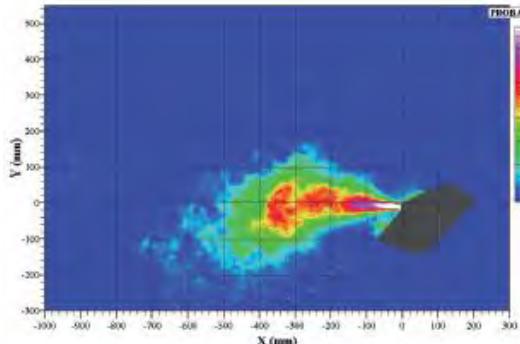


High-flow nasal cannula

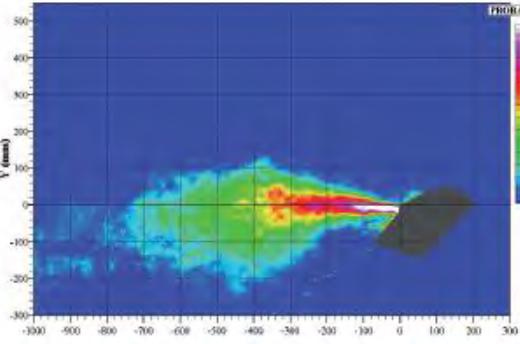


Simple mask

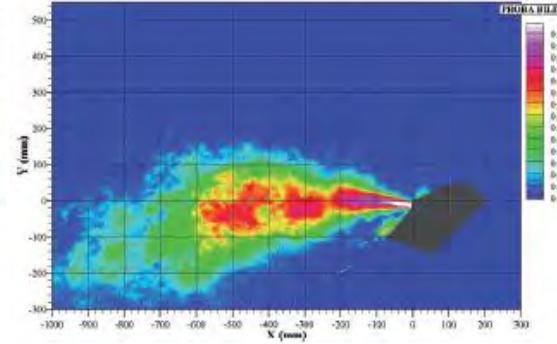



Venturi mask



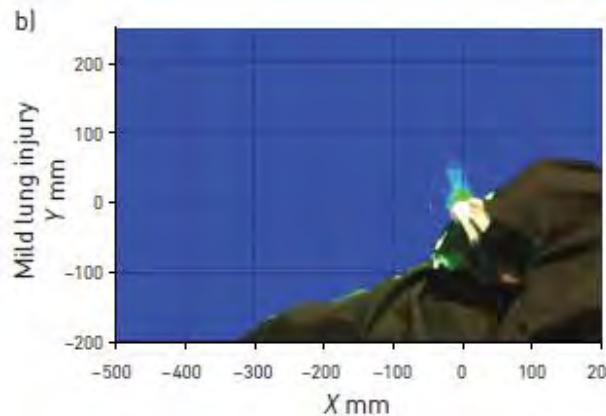

Nonbreather mask

| Lung condition | Oxygen device      |          | Dispersion distance, cm |
|----------------|--------------------|----------|-------------------------|
| Normal         | HFNC               | 60 L/min | 17.2 ± 3.3              |
|                |                    | 30 L/min | 13.0 ± 1.1              |
|                |                    | 10 L/min | 6.5 ± 1.5               |
|                | Simple mask        | 15 L/min | 11.2 ± 0.7              |
|                |                    | 10 L/min | 9.5 ± 0.6               |
|                | Nonrebreather mask | 10 L/min | 24.6 ± 2.2              |
|                | Venturi 40%        | 6 L/min  | 39.7 ± 1.6              |
|                | Venturi 35%        | 6 L/min  | 27.2 ± 1.1              |
|                |                    |          |                         |
| Mild           | HFNC               | 60 L/min | 7.2 ± 1.8               |
|                |                    | 30 L/min | 6.1 ± 1.7               |
|                |                    | 10 L/min | 4.3 ± 1.0               |
|                | Nasal cannula      | 1 L/min  | 66                      |
|                |                    | 3 L/min  | 70                      |
|                |                    | 5 L/min  | 100                     |
|                | Simple mask        | 15 L/min | 20.7 ± 1.2              |
|                |                    | 10 L/min | 12.5 ± 0.8              |
|                | Nonrebreather mask | 10 L/min | 24.6 ± 2.2              |
|                | Venturi 40%        | 6 L/min  | 39.7 ± 1.6              |
|                | Venturi 35%        | 6 L/min  | 33.8 ± 1.4              |
|                |                    |          |                         |
| Severe         |                    | 60 L/min | 4.8 ± 1.6               |
|                |                    | 30 L/min | 3.7 ± 1.2               |
|                |                    | 10 L/min | 3.0 ± 0.8               |

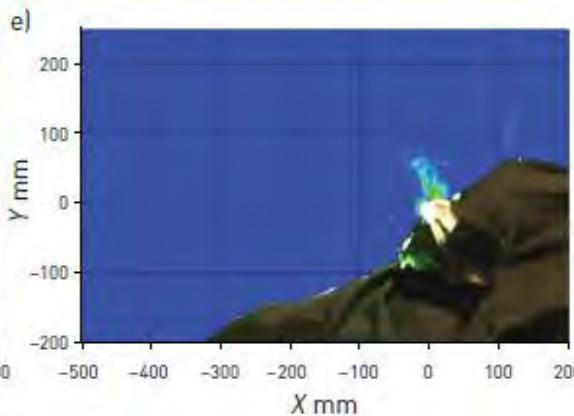

# HFNC vs standard nasal cannula



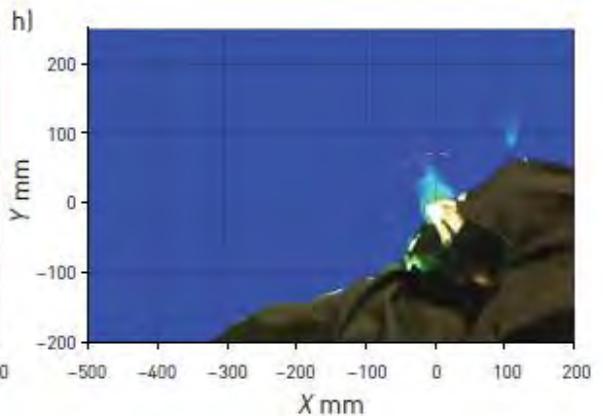
1 L/min




3 L/min




5 L/min


*Hui et al, Respirology (2011) 16, 1005–1013*



10 L/min



30 L/min



50 L/min

*Hui et al. Eur Respir J 2019; 53: 1802339*

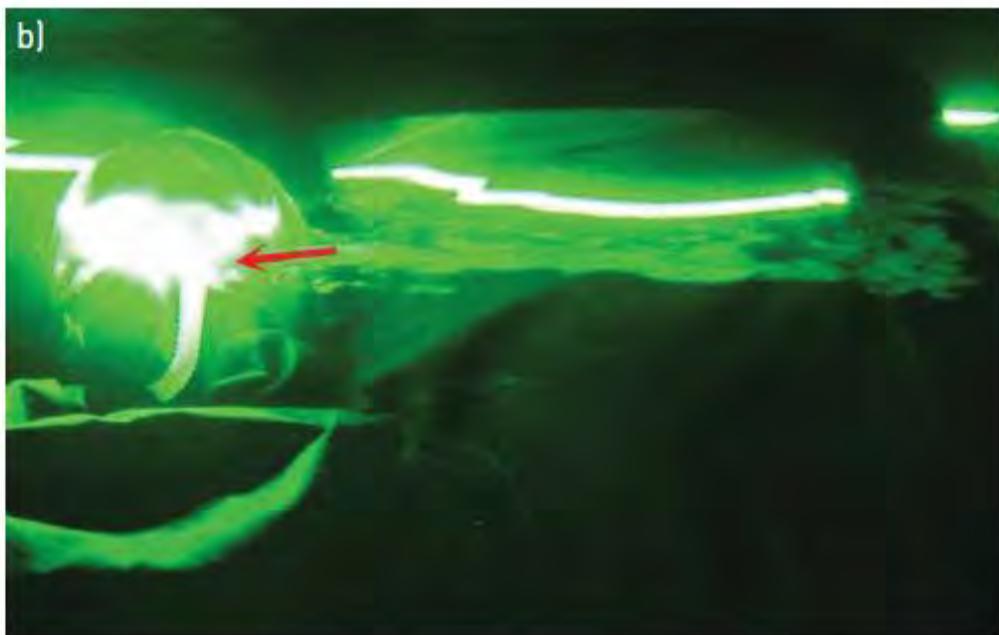
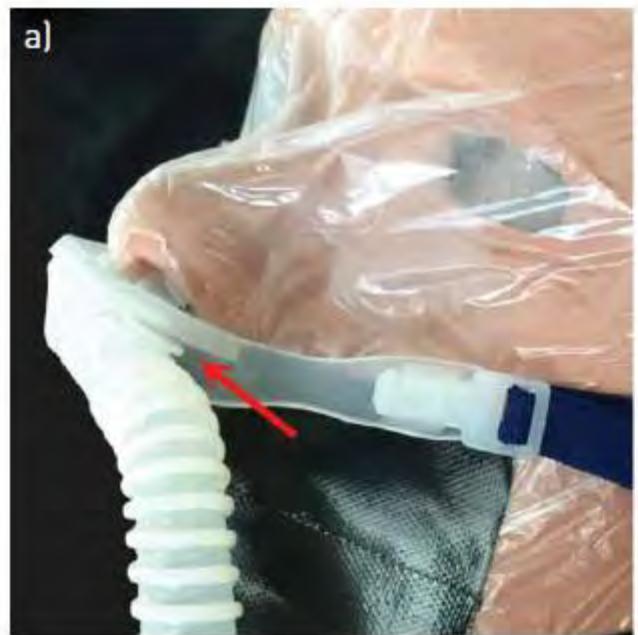
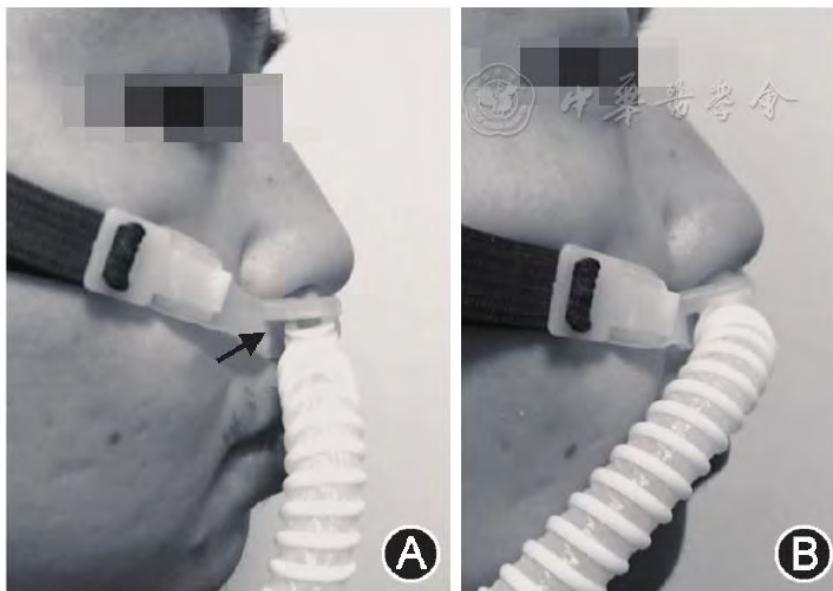





FIGURE 3 a) A loose connection (arrow) between the high-flow nasal cannula ( $60 \text{ L}\cdot\text{min}^{-1}$ ) and the interface tube. b) This resulted in exhaled air leakage to 620 mm laterally.



Zhonghua Jie He He Hu Xi Za Zhi.  
2020 Mar 12;43(3):189-194.

# In vivo study

Journal of Hospital Infection 101 (2019) 84–87

Available online at [www.sciencedirect.com](http://www.sciencedirect.com)

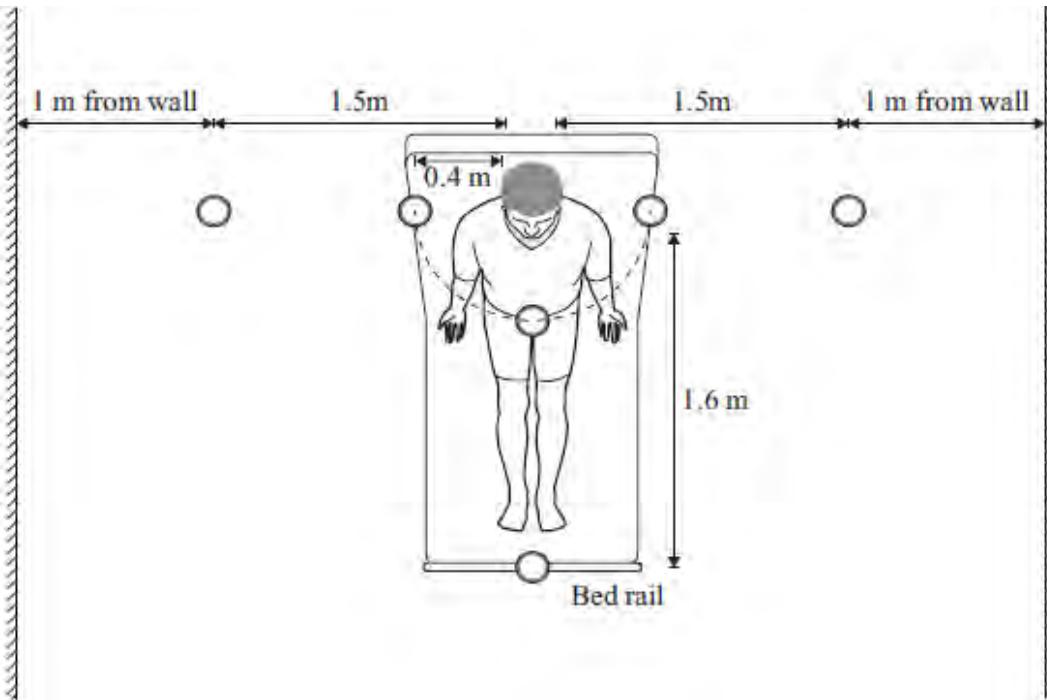
Journal of Hospital Infection

journal homepage: [www.elsevier.com/locate/jhin](http://www.elsevier.com/locate/jhin)

Healthcare  
Infection  
Society

Short report

**Comparison of high-flow nasal cannula versus oxygen face mask for environmental bacterial contamination in critically ill pneumonia patients: a randomized controlled crossover trial**


C.C.H. Leung <sup>a</sup>, G.M. Joynt <sup>a,\*</sup>, C.D. Gomersall <sup>a</sup>, W.T. Wong <sup>a</sup>, A. Lee <sup>a</sup>, L. Ling <sup>a</sup>, P.K.S. Chan <sup>b</sup>, P.C.W. Lui <sup>c</sup>, P.C.Y. Tsoi <sup>c</sup>, C.M. Ling <sup>b</sup>, M. Hui <sup>b</sup>

<sup>a</sup> Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong

<sup>b</sup> Department of Microbiology, The Chinese University of Hong Kong, Hong Kong

<sup>c</sup> Department of Pathology, Union Hospital, Hong Kong

J of Hospital Infection 2019;(101): 84 – 87.



19 patients were enrolled

- The mean (SD) age was 59 (14) years.
- Eight patients were female.
- 1 community acquired in one patient and 18 hospital-acquired.
- The mean (SD) APACHE II score was 20.1 (4.1), SOFA score 3.4 (2.1) and PaO<sub>2</sub>/FiO<sub>2</sub> ratio 276.7 (114.1) mmHg [6,7].
- Mean (SD) oxygen flow rate for oxygen mask was 8.6 (2.2) L/min and the FiO<sub>2</sub> while using HFNC was 0.5 (0.1) at 60 L/min.

# Result

Gram-negative bacterial count and total bacterial count by device (air sampling and settle plate), air changes per hour, and days of incubation (N = 19)

| Sample                         | ACH | 1-day incubation |               |         | 2-day incubation |               |         | 5-day incubation |               |         |
|--------------------------------|-----|------------------|---------------|---------|------------------|---------------|---------|------------------|---------------|---------|
|                                |     | HFNC             | OM            | P-value | HFNC             | OM            | P-value | HFNC             | OM            | P-value |
| <b>Gram-negative bacteria</b>  |     |                  |               |         |                  |               |         |                  |               |         |
| Air (cfu/m <sup>3</sup> )      | 6   | 0 (0–0)          | 0 (0–0.1)     | 0.770   | 0 (0–0)          | 0 (0–0)       | 0.208   | 0 (0–0.1)        | 0 (0–0.05)    | 0.250   |
|                                | 12  | 0 (0–0)          | 0 (0–0)       | 0.167   | 0 (0–0)          | 0 (0–0)       | 0.902   | 0 (0–0)          | 0 (0–0)       | 0.416   |
| 0.4 m settle plate (cfu/plate) | 6   | 0 (0–0)          | 0 (0–0)       | 0.862   | 0 (0–0)          | 0 (0–0.2)     | 0.568   | 0 (0–0)          | 0 (0–0)       | 0.250   |
|                                | 12  | 0 (0–0)          | 0 (0–0)       | 0.3925  | 0 (0–0)          | 0 (0–0)       | 0.500   | 0 (0–0.3)        | 0 (0–0)       | 0.119   |
| 1.5 m settle plate (cfu/plate) | 6   | 0 (0–0)          | 0 (0–0)       | 0.207   | 0 (0–0)          | 0 (0–0)       | 0.573   | 0 (0–0)          | 0 (0–0)       | 0.207   |
|                                | 12  | 0 (0–0)          | 0 (0–0)       | 0.500   | 0 (0–0)          | 0 (0–0)       | 0.500   | 0 (0–0)          | 0 (0–0)       | 0.500   |
| <b>Total bacterial count</b>   |     |                  |               |         |                  |               |         |                  |               |         |
| Air (cfu/m <sup>3</sup> )      | 6   | 1.7 (1.0–4.3)    | 2.4 (1.1–4.2) | 0.707   | 3.6 (2–6.9)      | 3.8 (1.9–5.5) | 0.700   | 5.2 (2.2–8.7)    | 4.5 (1.7–9.6) | 0.105   |
|                                | 12  | 1 (0.5–1.7)      | 1.3 (0.5–2.0) | 0.915   | 1.6 (1.0–2.7)    | 1.9 (1.1–3.1) | 0.776   | 2.1 (1.0–4.2)    | 2.3 (0.9–3.5) | 0.205   |
| 0.4 m settle plate (cfu/plate) | 6   | 1.7 (0.7–4.5)    | 1.3 (0.7–2.0) | 0.428   | 3.7 (0.8–7.2)    | 2 (0.7–2.8)   | 0.287   | 4.3 (1.3–6.0)    | 2.0 (1.0–5.0) | 0.175   |
|                                | 12  | 0.7 (0.2–1.8)    | 1 (0.3–2.2)   | 0.175   | 1 (0.8–1.5)      | 2 (0.7–3.2)   | 0.987   | 1.7 (0.7–3.3)    | 2.0 (1.0–3.3) | 0.186   |
| 1.5 m settle plate (cfu/plate) | 6   | 1.0 (0.5–1.8)    | 0.3 (0.3–0.8) | 0.0385  | 1.3 (1–2.7)      | 0.7 (0.3–1.3) | 0.010   | 1.7 (1.3–3.0)    | 1.3 (0.3–2.3) | 0.091   |
|                                | 12  | 0.7 (0.2–0.8)    | 0.3 (0–1)     | 0.387   | 0.7 (0.3–1.2)    | 1 (0.3–1.3)   | 0.786   | 0.7 (0.3–1.7)    | 1.0 (0.3–2.7) | 0.187   |

ACH, air changes per hour; HFNC, high-flow nasal cannulae; OM, oxygen mask; cfu, colony-forming units.

Values for HFNC and OM are median (interquartile range).

All statistical tests one-tailed.

## Post-hoc analysis

- The TBC on settle plates placed at 0.4 m was higher than at 1.5 m with either device (P = 0.002-0.037)
- higher at six ACH than at 12 ACH with either device (P = 0.000- 0.002).

# Resolution



- Wear a surgical mask for patients during HFNC therapy
- Connect nasal cannula tightly

# Recommendation



Daugherty et al, Respir Care 2008;53(2):201–212.

- **Use high flow nasal cannula (6-15 L/min, Salter lab) with patient wearing a surgical mask**
- **Place a filter on oxygen mask, avoid using Venturi mask**

# Noninvasive ventilation

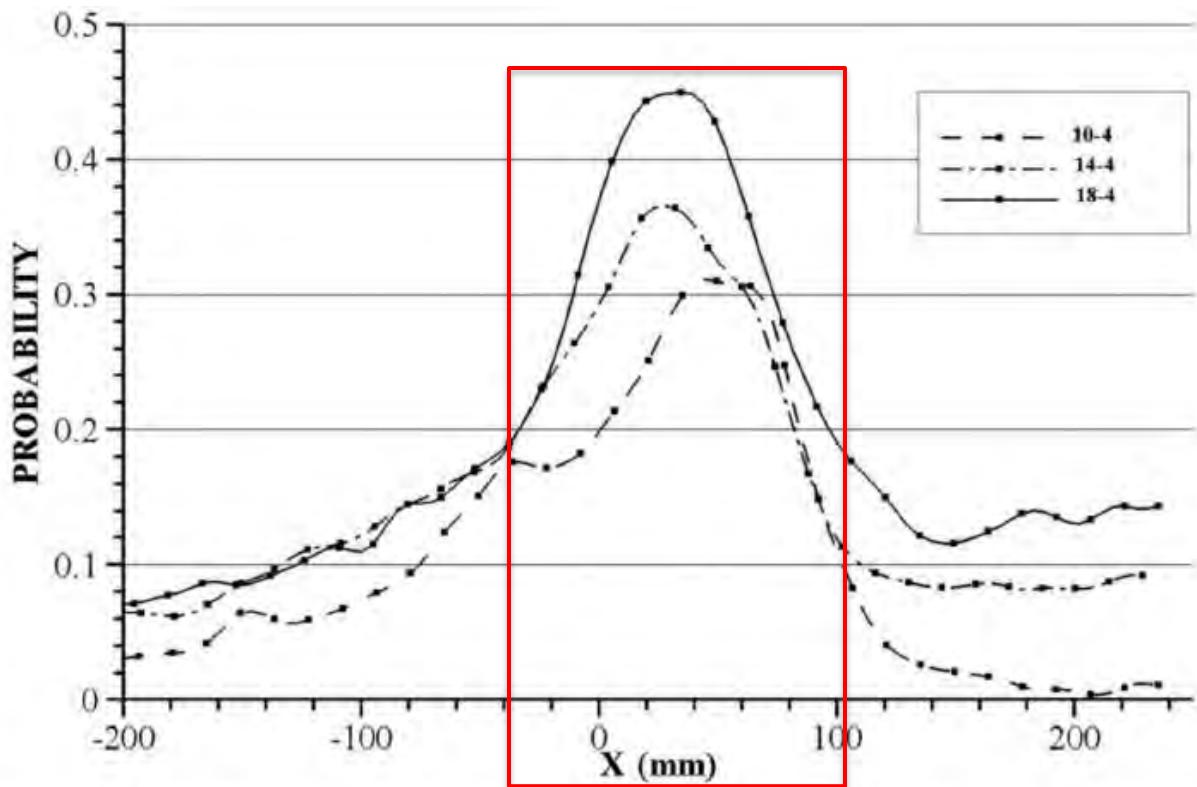
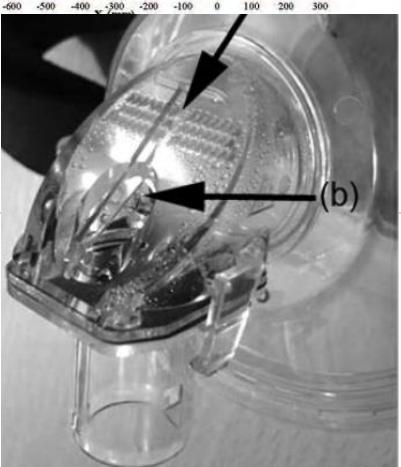
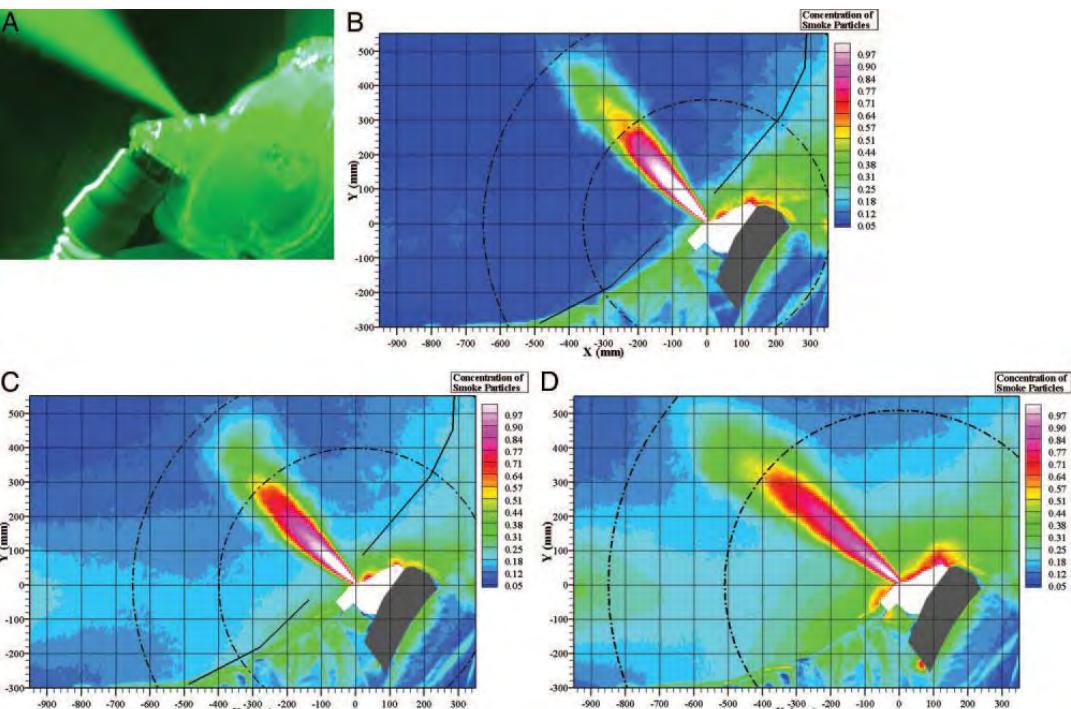





FIGURE 6. The profile of concentration probability along a line 300 mm above the mask ( $y = 0$  mm on contours and  $x$  is the horizontal coordinate, exactly as in the contour plots) is plotted for each of the three IPAP settings (ie, 10, 14, and 18 cm  $H_2O$ ), whereas EPAP was maintained at 4 cm  $H_2O$ . The variation in the shapes represented a turbulent jet flow, which was highly variable.

# Comparison of different masks



ComfortFull 2 mask

Hui et al, Chest 2009; 136:998–1005

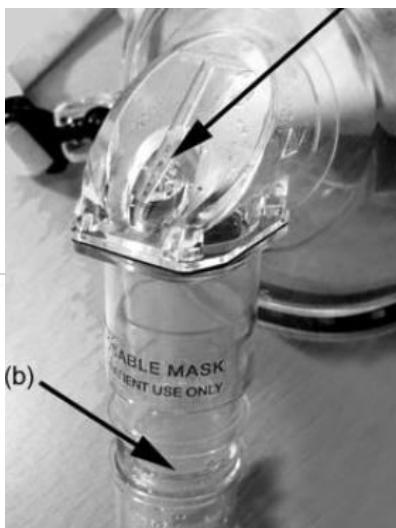
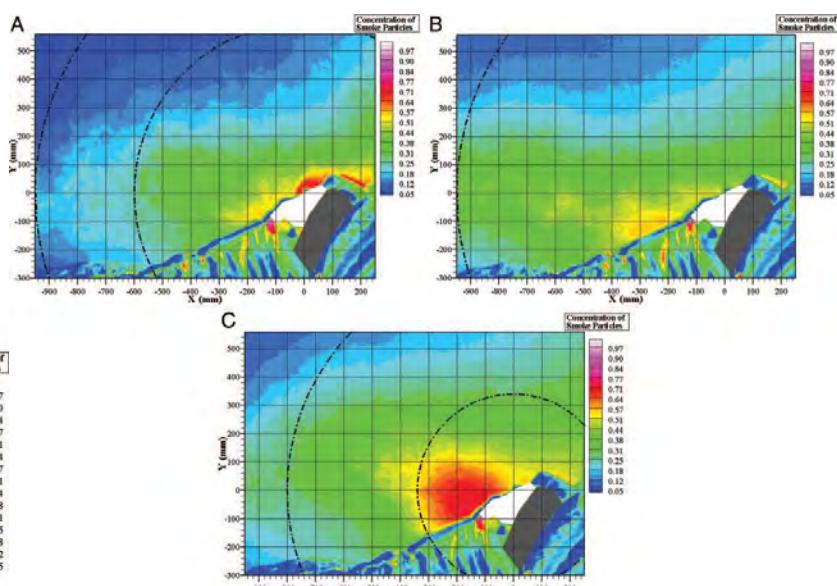
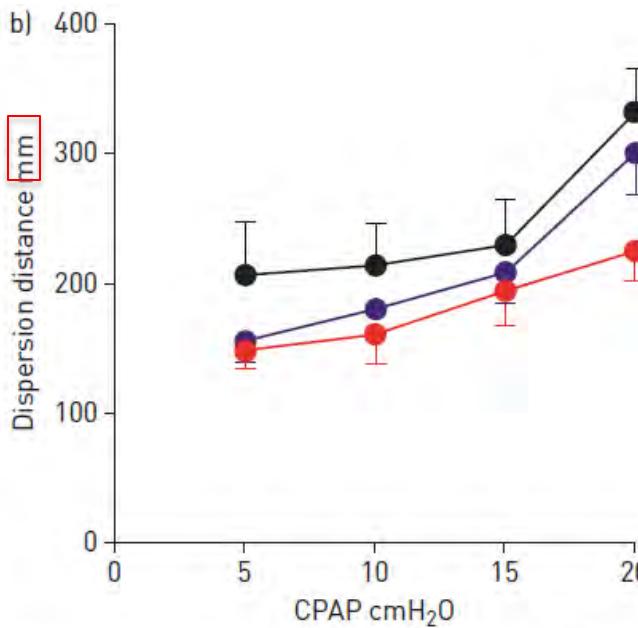
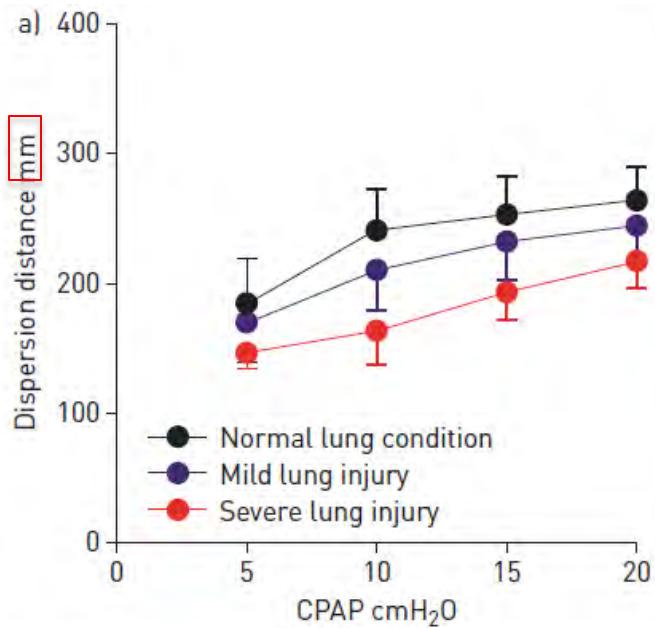






Image 3 mask

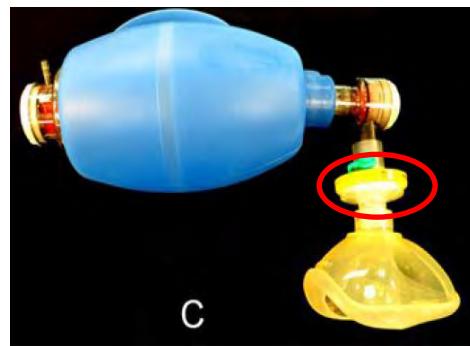
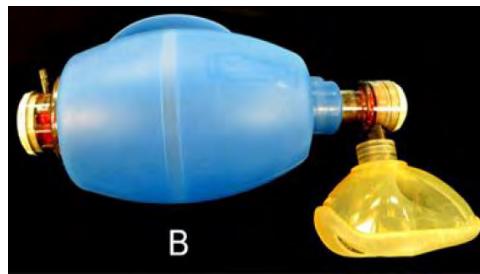
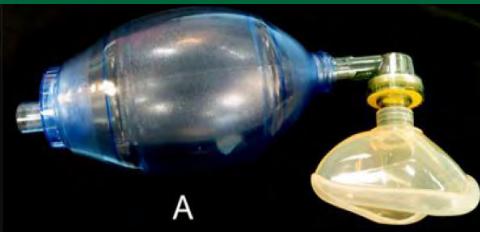
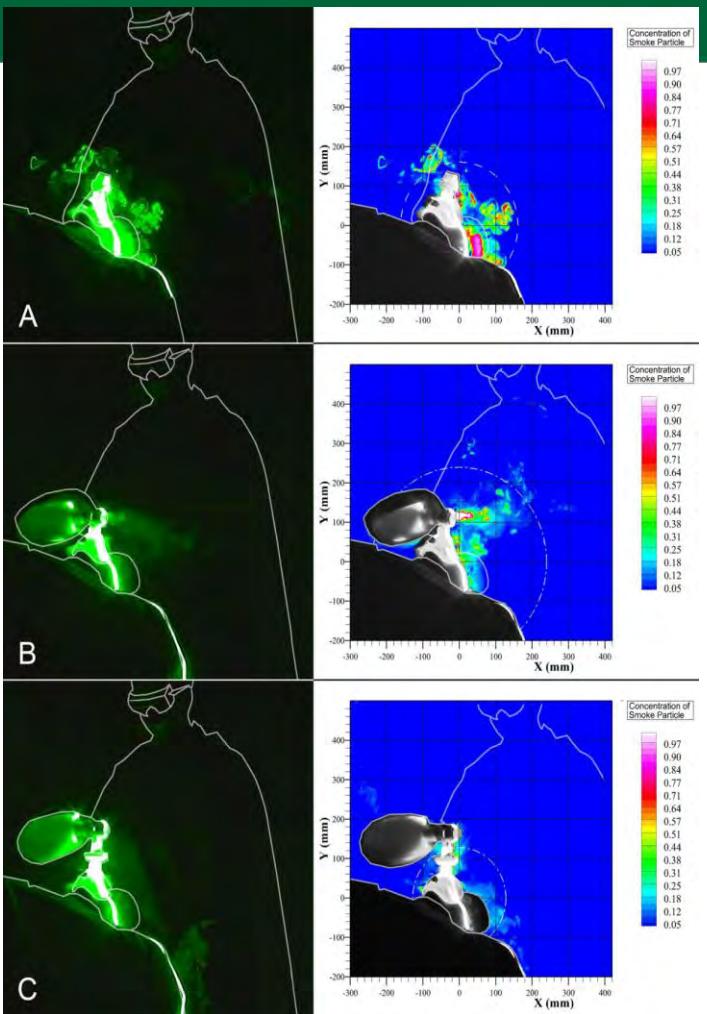
# Different CPAP settings and interfaces



Eur Respir J  
2019; 53:  
1802339

FIGURE 4 Changes of exhaled air dispersion with increasing continuous positive airway pressure [CPAP] and worsening degree of lung injury in a) Resironics Nuance Pro Gel and b) ResMed Swift FX nasal pillows.







# In vivo study

- Compared with baseline values
  - NIV using a vented mask produced droplets in the large size range ( $> 10 \mu\text{m}$ ) in patient ( $p = 0.042$ ) and coryzal subjects ( $p = 0.044$ )
    - this increase was not seen using the NIV circuit modification with non-vented mask and exhalation filter
  - but not in normal controls ( $p = 0.379$ )

# Resolution

- Mask fit is critical, if full face mask is not fit, consider using Total face mask to get sealed
- Avoid using vent mask with expiratory port on the mask
- For short-term use, place a filter between mask and expiratory port in the single limb ventilator, avoid using humidification
- For long-term use or patient complaints dry gas, use dual limb vent and provide humidification





# Manual ventilation

- Place filter between resuscitator and mask
- Tight seal resuscitator mask when it is utilized

| Group                          | No. of providers | Exhaled air dispersion distance (mm)* |                            |                                                              |
|--------------------------------|------------------|---------------------------------------|----------------------------|--------------------------------------------------------------|
|                                |                  | Laerdal silicone resuscitator         | Ambu silicone resuscitator | Ambu silicone resuscitator with addition of breathing filter |
| Anesthesiologists/Intensivists | 5                | 161±5                                 | 242±20                     | 128±21                                                       |
| Respiratory physicians         | 5                | 187±17                                | 210±48                     | 148±17                                                       |
| Nurses                         | 5                | 230±47                                | 267±44                     | 241±62                                                       |
| Medical students               | 5                | 175±54                                | 234±51                     | 129±33                                                       |

# PRINCIPLES\* OF AIRWAY MANAGEMENT IN CORONAVIRUS COVID-19

FOR SUSPECTED/REPORTABLE\*\* OR CONFIRMED CASES OF COVID-19



**BEFORE**

| STAFF PROTECTION                                            |                                                  | PREPARATION                                      |                                                                  |
|-------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|
| Hand Hygiene                                                | Full Personal Protective Equipment***            | Early Preparation of Drugs and Equipment         | Meticulous Airway Assessment                                     |
| Minimize Personnel During Aerosol Generating Procedures**** | Airborne Infection Isolation Room (if available) | Formulate plan Early                             | Connect Viral/Bacterial Filter to Circuits and Manual Ventilator |
|                                                             |                                                  | Use Video Laryngoscopy (Disposable if available) |                                                                  |

**DURING**

| TEAM DYNAMICS                        |                                                                  | TECHNICAL ASPECTS                                      |                                                                       |
|--------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|
| Clear Delineation of Roles           | Clear Communication of Airway Plan                               | Airway Management by Most Experienced Practitioner     | Tight Fitting Mask with Two Hand Grip to Minimize Leak                |
| Closed-loop Communication Throughout | Cross-monitoring by All Team Members for Potential Contamination | Lowest Gas Flows Possible to Maintain Oxygenation      | Rapid Sequence Induction and Avoid Bag-Mask Ventilation When Possible |
|                                      |                                                                  | Positive Pressure Ventilation Only After Cuff Inflated |                                                                       |

**AFTER**

|                                         |                                                                         |                                            |              |                 |
|-----------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|--------------|-----------------|
| Avoid Unnecessary Circuit Disconnection | If Disconnection Needed, Wear PPE and Standby Ventilator +/- Clamp Tube | Strict Adherence to Proper Degowning Steps | Hand Hygiene | Team Debriefing |
|-----------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|--------------|-----------------|

\*Principles of Airway Management of COVID-19 may apply to Operating Theatre, Intensive Care, Emergency Department and Ward Settings. Similar principles apply to extubation of COVID-19 patients.  
\*\*These are general principles and variations on definition of a suspected/reportable case. Please refer to your own institutional practice.  
\*\*\*Personal Protective Equipment according to your own institutional recommendation, may include: Particulate Respirator, Cap, Eye Protection, Long-sleeved Waterproof Gown, Gloves  
\*\*\*\*Aerosol Generating Procedures: Tracheal Intubation, Non-invasive Ventilation, Tracheostomy, Cardiopulmonary Resuscitation, Manual Ventilation before Intubation, Bronchoscopy, Open Suctioning of Respiratory Tract

References:  
1. World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected Interim guidance. January 2020.  
2. Center for Disease Control and Prevention. Interim Infection Prevention and Control Recommendations for Patients with Confirmed 2019 Novel Coronavirus (2019-nCoV) or Persons Under Investigation for 2019-nCoV in Healthcare Settings. February 2020.

Disclaimer: This infographic is used for informational purposes only, and is not intended to replace institutional policy. Please refer to your own institutional guidelines for appropriate recommendations. © Department of Anaesthesia and Intensive Care, Prince of Wales, Hong Kong. All rights reserved.

Department of intensive care unit, Prince of wales hospital, Hongkong, China



# Personal protection equipment

|                             | Infected<br>Staff (n=13) | Non-infected<br>staff (n=241) | p*      | Odds ratio<br>(95% CI)† |
|-----------------------------|--------------------------|-------------------------------|---------|-------------------------|
| <b>Protective measures‡</b> |                          |                               |         |                         |
| Masks§                      | 2 (15%)                  | 169 (70%)                     | 0.0001  | 13 (3-60)               |
| Paper mask                  | 2                        | 26                            | 0.511¶  |                         |
| Surgical mask               | 0                        | 51                            | 0.007¶  |                         |
| N95                         | 0                        | 92                            | 0.0004¶ |                         |
| Gloves                      | 4 (31%)                  | 117 (48%)                     | 0.364   | 2 (0.6-7)               |
| Gowns                       | 0 (0%)                   | 83 (34%)                      | 0.006   | NC                      |
| Hand-washing                | 10 (77%)                 | 227 (94%)                     | 0.047   | 5 (1-19)                |
| All measures                | 0 (0%)                   | 69 (29%)                      | 0.022   | NC                      |



Lancet 2003; 361:1519-20.

## Personal protection equipment (PPE)

- N95 respirator/surgical mask for airborne/droplet precautions
- Contact precautions: Disposable gloves, gown, cap
- Eye protection with non-reusable goggles and face-shield
- Powered air purification respirators (PAPR) may be used when performing high-risk procedures (Figs 1a and 2a)
- Pens, paper, other personal items and medical records should not be allowed into or removed from the room
- Immediate removal of grossly contaminated PPE and showering in nearby facility

Respirology 2003; 8: S31-S35

# PPE



# Thanks for listening!



A Chinese respiratory therapist stopped transportation to view the lingering light of the setting sun with a COVID-19 patient

# Acknowledgement

- Ramandeep Kaur, PhD(c), RRT
- Fengming Luo, MD
- James B Fink, PhD, RRT
- Tyler Weiss, MSc, RRT